Synthesis 2013; 45(6): 719-728
DOI: 10.1055/s-0032-1316786
feature article
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Synthesis of the Tricyclic Core of FR901483 Featuring a Rhodium-Catalyzed [2+2+2] Cycloaddition

Stéphane Perreault
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA   Email: rovis@lamar.colostate.edu
,
Tomislav Rovis*
Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA   Email: rovis@lamar.colostate.edu
› Author Affiliations
Further Information

Publication History

Received: 27 July 2012

Accepted: 04 September 2012

Publication Date:
26 February 2013 (online)


Abstract

An efficient approach to the tricyclic framework of FR901483 is described. The sequence features a [3,3]-sigmatropic rearrangement of a cyanate to an isocyanate, followed by its subsequent asymmetric rhodium-catalyzed [2+2+2] cycloaddition with a terminal alkyne for the synthesis of the indolizidine core. The aza-tricyclic core is completed using an intramolecular benzoin reaction to close the last ring of the natural product. Through a model study of the key cycloaddition, we evaluated the impact of different substituents on the tether of the alkenyl isocyanate.

Supporting Information

 
  • References


    • For reviews see refs 1a,b and for reviews of recent syntheses, see refs 1c–g:
    • 1a Daly JW. J. Med. Chem. 2003; 46: 445
    • 1b Daly JW, Spande TF, Garraffo HM. J. Nat. Prod. 2005; 68: 1556
    • 1c Michael JP. Nat. Prod. Rep. 2000; 17: 579
    • 1d Michael JP. Nat. Prod. Rep. 2002; 20: 458
    • 1e Michael JP. Nat. Prod. Rep. 2005; 22: 603
    • 1f Michael JP. Nat. Prod. Rep. 2007; 24: 191
    • 1g Michael JP. Nat. Prod. Rep. 2008; 25: 139
  • 2 Sakamoto K, Tsujii E, Abe F, Nakanishi T, Yamashita M, Shigematsu N, Izumi S, Okuhara M. J. Antibiot. 1996; 49: 37
  • 3 For a review on the biology and the synthesis of FR901483, see: Bonjoch J, Diaba F. In Studies in Natural Products Chemistry, Bioactive Natural Products (Part L) . Vol. 32. Atta-ur-Rahman, Ed.; Elsevier; Amsterdam: 2005: 3-60
    • 4a Snider BB, Lin H. J. Am. Chem. Soc. 1999; 121: 7778
    • 4b Scheffer G, Seike H, Sorensen EJ. Angew. Chem. Int. Ed. 2000; 39: 4593
    • 4c Ousmer M, Braun NA, Ciufolini MA. Org. Lett. 2001; 3: 765
    • 4d Maeng J.-H, Funk RL. Org. Lett. 2001; 3: 1125
    • 4e Kan T, Fujimoto T, Ieda S, Asoh Y, Kitaoka H, Fukuyama T. Org. Lett. 2004; 6: 2729
    • 4f Brummond KM, Hong S.-P. J. Org. Chem. 2005; 70: 907
    • 4g Carson CA, Kerr MA. Org. Lett. 2009; 11: 777
    • 4h Ousmer M, Braun NA, Bavoux C, Perrin M, Ciufolini MA. J. Am. Chem. Soc. 2001; 123: 7534
    • 4i Ieda S, Asoh Y, Fujimoto T, Kitaoka H, Kan T, Fukuyama T. Heterocycles 2009; 79: 721
    • 4j Ieda S, Kan T, Fukuyama T. Tetrahedron Lett. 2010; 51: 4027
    • 4k Ma A.-J, Tu Y.-Q, Peng J.-B, Dou Q.-Y, Hou S.-H, Zhang F.-M, Wang S.-H. Org. Lett. 2012; 14: 3604
    • 4l Huo H.-H, Zhang H.-K, Xia X.-E, Huang P.-Q. Org. Lett. 2012; 14: 4834

      For synthetic approaches leading to the tricyclic framework of FR901483, see:
    • 5a Yamazaki N, Suzuki H, Kibayashi C. J. Org. Chem. 1997; 62: 8280
    • 5b Wardrop DJ, Zhang W. Org. Lett. 2001; 3: 2353
    • 5c Suzuki H, Yamazaki N, Kibayashi C. Tetrahedron Lett. 2001; 42: 3013
    • 5d Bonjoch J, Diaba F, Puigbó G, Peidró E, Solé D. Tetrahedron Lett. 2003; 44: 8387
    • 5e Panchaud P, Ollivier C, Renaud P, Zigmantas S. J. Org. Chem. 2004; 69: 2755
    • 5f Kropf JE, Meigh IC, Bebbington WP, Weinreb SM. J. Org. Chem. 2006; 71: 2046
    • 5g Simila ST. M, Reichelt A, Martin SF. Tetrahedron Lett. 2006; 47: 2933
    • 5h Kaden S, Reissig H.-U. Org. Lett. 2006; 8: 4763
    • 5i Asari A, Angelov P, Auty JM, Hayes C. Tetrahedron Lett. 2007; 48: 2631
    • 5j Seike H, Sorensen EJ. Synlett 2008; 695
  • 6 Liang H, Ciufolini MA. Biomimetic Synthesis of Alkaloids Derived from Tyrosine: The Case of FR-901483 and TAN-1251 Compounds. In Biomimetic Organic Synthesis. 1st ed.. Poupon E, Nay B. Wiley-VCH; Weinheim: 2011: 61-89
    • 7a Yu RT, Rovis T. J. Am. Chem. Soc. 2006; 128: 12370
    • 7b Lee EE, Rovis T. Org. Lett. 2008; 10: 1231
    • 7c Yu RT, Rovis T. J. Am. Chem. Soc. 2008; 130: 3262
    • 7d Yu RT, Lee EE, Malik G, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2379
    • 7e Dalton DM, Oberg KM, Yu RT, Lee EE, Perreault S, Oinen ME, Pease ML, Malik G, Rovis T. J. Am. Chem. Soc. 2009; 131: 15717
    • 7f Dalton DM, Rappé AK, Rovis T. Chem. Sci. 2013; in press. DOI: 10.1039/C3SC50271F
    • 8a Friedman RK, Rovis T. J. Am. Chem. Soc. 2009; 131: 10775
    • 8b Oinen ME, Yu RT, Rovis T. Org. Lett. 2009; 11: 4934

      For reviews, see:
    • 9a Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
    • 9b Keller-Friedman R, Oberg KM, Dalton DM, Rovis T. Pure Appl. Chem. 2010; 82: 1353
  • 10 4-Methoxybenzylacetylene (7) was made according to a two-step procedure from 4-methoxybenzyl chloride: 1. 2 mol% Co(acac)3, BrMgC≡CTMS, THF, 23 °C followed by purification by distillation (bp 90 °C/4 Torr) to give the TMS-protected alkyne (83% yield): Kuni, A.; Saino, N.; Kamachi, T.; Okamoto, S. Tetrahedron Lett. 2006, 47, 2591; 2. KF·2H2O, DMF, 23 °C followed by purification by distillation (bp 52 °C/5.3 mbar) to give 7 (85% yield).
    • 11a Trost BM, Shi Y. J. Am. Chem. Soc. 1993; 115: 9421
    • 11b Tsimelzon A, Braslau R. J. Org. Chem. 2005; 70: 10854
    • 11c Lipshutz BH, Sharma S, Dimock SH, Behling JR. Synthesis 1992; 191
  • 12 Queignec R, Kirschleger B, Lambert F, Aboutaj M. Synth. Commun. 1988; 18: 1213
  • 13 Minami N, Ko SS, Kishi Y. J. Am. Chem. Soc. 1982; 104: 1109

    • For selected examples of [3,3]-sigmatropic rearrangements of cyanates into isocyanates, see:
    • 14a Ichikawa Y. Synlett 1991; 238
    • 14b Ichikawa Y, Yamazaki M, Isobe M. J. Chem. Soc., Perkin Trans. 1 1993; 2429
    • 14c Ichikawa Y, Tsuboi K, Isobe M. J. Chem. Soc., Perkin Trans. 1 1994; 2791
    • 14d Ichikawa Y, Ito T, Nishiyama T, Isobe M. Synlett 2003; 1034
    • 14e Ichikawa Y, Ito T, Isobe M. Chem.–Eur. J. 2005; 11: 1949
    • 14f Roy S, Spino C. Org. Lett. 2006; 8: 939
    • 15a Nugent WA, RajanBabu TV. J. Am. Chem. Soc. 1994; 116: 986
    • 15b Curran DP In Comprehensive Organic Synthesis . Vol. 4. Trost BM, Fleming I, Paquette LA. Pergamon; Oxford: 1991: 815
    • 15c Gansauer A, Pierobon M, Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
    • 15d Gansauer A. Synlett 1998; 801

      The free energy difference between trans- and cis-indolizidine is 2.4 kcal per mol in favor of the trans isomer:
    • 16a Theobald AE, Lingard RG. Spectrochim. Acta, Part A 1968; 24: 1245
    • 16b Aaron HS, Parker Ferguson C. Tetrahedron Lett. 1968; 9: 6191
    • 16c Crabb TA, Newton RF. Tetrahedron Lett. 1970; 11: 1551
    • 16d Crabb TA, Jackson D. Chem. Rev. 1971; 71: 109
    • 16e Skvortsov IM. Chem. Heterocycl. Compd. (Engl. Transl.) 2006; 42: 1247

      This kind of strained aziridinium intermediate has been previously invoked:
    • 17a ref. 5h.
    • 17b For a review on aziridinium ring opening, see: Metro TX, Duthion B, Pardo DG, Cossy J. Chem. Soc. Rev. 2010; 39: 89
    • 18a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 18b Moore JL, Rovis T. Top. Curr. Chem. 2010; 291: 77
    • 19a Breslow R. Chem. Ind. (London) 1957; 893
    • 19b Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 20a Hachisu Y, Bode JW, Suzuki K. Adv. Synth. Catal. 2004; 346: 1097
    • 20b Enders D, Niemeier O, Balensiefer T. Angew. Chem. Int. Ed. 2006; 45: 1463
    • 20c Takikawa H, Hachisu Y, Bode JW, Suzuki K. Angew. Chem. Int. Ed. 2006; 45: 3492
    • 20d Takikawa H, Suzuki K. Org. Lett. 2007; 9: 2713
    • 20e Ema T, Oue Y, Akihara K, Miyazaki Y, Sakai T. Org. Lett. 2009; 11: 4866
    • 21a Read de Alaniz J, Kerr MS, Moore JL, Rovis T. J. Org. Chem. 2008; 73: 2033
    • 21b Vora HU, Lathrop SP, Reynolds NT, Kerr MS, Read de Alaniz J, Rovis T. Org. Synth. 2010; 87: 350
  • 22 A screen of pre-catalysts (thiazolium and triazolium salts) did not improve the yield of this cyclization.
  • 23 At lower concentration (0.01 M instead of 0.05 M) only the starting material was observed. Increasing the temperature or the catalyst loading did not affect the yield, while lowering the temperature or the catalyst loading led to no ring-formed product.