Synthesis 2012; 44(22): 3496-3504
DOI: 10.1055/s-0032-1316791
paper
© Georg Thieme Verlag Stuttgart · New York

Synthetic Routes to a Series of Proximal and Distal 2′-Deoxy Fleximers

Orrette R. Wauchope
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA   Fax: +1(410)4552608   eMail: kseley@umbc.edu
,
Melvin Velasquez
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA   Fax: +1(410)4552608   eMail: kseley@umbc.edu
,
Katherine Seley-Radtke*
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA   Fax: +1(410)4552608   eMail: kseley@umbc.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 31. Juli 2012

Accepted after revision: 10. September 2012

Publikationsdatum:
02. Oktober 2012 (online)


Abstract

Two series of innovative 2′-deoxy nucleoside analogues have been designed where the nucleobase has been split into its imidazole and pyrimidine subunits. This structural modification serves to introduce flexibility into the nucleobase scaffold while still retaining the elements required for recognition. The synthetic efforts to realize these analogues are described within.

 
  • References

  • 1 Das K, Lewi PJ, Hughes SH, Arnold E. Prog. Biophys. Mol. Biol. 2005; 88: 209
  • 2 Griffiths PD. J. Clin. Virol. 2009; 46: 3
  • 3 Menendez-Arias L. Antiviral Res. 2010; 85: 210
  • 4 De Clercq E. Antiviral Res. 2010; 85: 19
  • 5 Das K, Bauman JD, Clark AD. Jr, Frenkel YV, Lewi PJ, Shatkin AJ, Hughes SH, Arnold E. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 1466
  • 6 Das K, Clark AD. Jr, Lewi PJ, Heeres J, De Jonge MR, Koymans LM, Vinkers HM, Daeyaert F, Ludovici DW, Kukla MJ, De Corte B, Kavash RW, Ho CY, Ye H, Lichtenstein MA, Andries K, Pauwels R, De Bethune MP, Boyer PL, Clark P, Hughes SH, Janssen PA, Arnold E. J. Med. Chem. 2004; 47: 2550
  • 7 Tuske S, Sarafianos SG. Nat. Struct. Mol. Biol. 2004; 11: 469
  • 8 St Amant AH, Bean LA, Guthrie JP, Hudson RH. Org. Biomol. Chem. 2012; 10: 6521
  • 9 Seley KL, Quirk S, Salim S, Zhang L, Hagos A. Bioorg. Med. Chem. Lett. 2003; 13: 1985
  • 10 De Clercq E. Biochem. Pharmacol. 1987; 36: 2567
  • 11 Chiang PK. Pharmacol. Ther. 1998; 77: 115
  • 12 Becker DJ, Lowe JB. Glycobiology 2003; 13: 41R
  • 13 Park SH, Pastuszak I, Drake R, Elbein AD. J. Biol. Chem. 1998; 273: 5685
  • 14 Hinderlich S, Berger M, Blume A, Chen H, Ghaderi D, Bauer C. Biochem. Biophys. Res. Commun. 2002; 294: 650
  • 15 Quirk S, Seley KL. Biochemistry 2005; 44: 13172
  • 16 Quirk S, Seley KL. Biochemistry 2005; 44: 10854
  • 17 Seley KL, Zhang L, Hagos A. Org. Lett. 2001; 3: 3209
  • 18 Seley KL, Zhang L, Hagos A, Quirk S. J. Org. Chem. 2002; 67: 3365
  • 19 Seley KL In Recent Advances in Nucleosides: Chemistry and Chemotherapy . Chu CK. Elsevier Science; Amsterdam: 2002: 299
  • 20 Wauchope OR, Johnson C, Krishnamoorthy P, Andrei G, Snoeck R, Balzarini J, Seley-Radtke KL. Bioorg. Med. Chem. 2012; 20: 3009
  • 21 Matsunaga N, Kaku T, Ojida A, Tasaka A. Tetrahedron: Asymmetry 2004; 15: 2021
  • 22 White JD, Hansen JD. J. Org. Chem. 2005; 70: 1963
  • 23 Prusoff WH. J. Org. Chem. 1985; 50: 841
  • 24 Seley KL, Salim S, Zhang L. Org. Lett. 2005; 7: 63
  • 25 Seley KL, Salim S, Zhang L, O’Daniel PI. J. Org. Chem. 2005; 70: 1612
  • 26 Taguchi H, Wang SY. J. Org. Chem. 1979; 44: 4385
  • 27 Ichikawa S, Shuto S, Minakawa N, Matsuda A. J. Org. Chem. 1997; 62: 1368
  • 28 Minakawa N, Kojima N, Hikishima S, Sasaki T, Kiyosue A, Atsumi N, Ueno Y, Matsuda A. J. Am. Chem. Soc. 2003; 125: 9970
  • 29 Sakamoto T, Kondo Y, Watanabe R, Yamanaka H. Chem. Pharm. Bull. 1986; 34: 2719
  • 30 Krische MJ, Lehn J.-M, Kyritsakas N, Fischer J. Helv. Chim. Acta 1998; 81: 1909