Synlett 2012; 23(15): 2147-2152
DOI: 10.1055/s-0032-1317043
synpacts
© Georg Thieme Verlag Stuttgart · New York

Advancing Tetrazine Bioorthogonal Reactions through the Development of New Synthetic Tools

Neal K. Devaraj*
University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA, Fax: +1(858)5340202   eMail: ndevaraj@ucsd.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 21. Juni 2012

Accepted: 17. Juli 2012

Publikationsdatum:
08. August 2012 (online)


In memory of Prof. Jürgen Sauer

Abstract

There has been increasing interest in the use of tetrazines as partners in bioorthogonal inverse Diels–Alder cycloadditions. Although tetrazine cycloadditions possess several characteristics that make them attractive compared to alternative coupling strategies, the coupling partners, 1,2,4,5-tetrazines and strained alkenes and cycloalkynes, are not trivial to synthesize. The use of tetrazines and dienophiles in biological applications has required the development of new synthetic methodologies to create stable yet reactive probes conveniently. This paper addresses the synthetic milestones that have enabled and improved tetrazine cycloadditions as a popular form of bioorthogonal chemistry and highlights recent work from our lab that we believe has advanced the methodology available for the synthesis of tetrazines[ 1 ] and smaller strained cyclopropene dienophiles.[ 2 ] We also outline some future challenges and open questions that remain to be addressed.

 
  • References

  • 1 Yang J, Karver MR, Li WL, Sahu S, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
  • 2 Yang J, Seckute J, Cole CM, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 7476
  • 3 Pinner A. Ber. Dtsch. Chem. Ges. 1893; 26: 2126
  • 4 Carboni RA, Lindsey RV. J. Am. Chem. Soc. 1959; 81: 4342
  • 5 Sauer J, Heldmann DK, Hetzenegger J, Krauthan J, Sichert H, Schuster J. Eur. J. Org. Chem. 1998; 2885
  • 6 Thalhammer F, Wallfahrer U, Sauer J. Tetrahedron Lett. 1990; 31: 6851
  • 7 Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
  • 8 Royzen M, Yap GP. A, Fox JM. J. Am. Chem. Soc. 2008; 130: 3760
  • 9 Devaraj NK, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
  • 10 Devaraj NK, Upadhyay R, Haun JB, Hilderbrand SA, Weissleder R. Angew. Chem. Int. Ed. 2009; 48: 7013
  • 11 Taylor MT, Blackman ML, Dmitrenko O, Fox JM. J. Am. Chem. Soc. 2011; 133: 9646
  • 12 Karver MR, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2011; 22: 2263
  • 13 Devaraj NK, Hilderbrand S, Upadhyay R, Mazitschek R, Weissleder R. Angew. Chem. Int. Ed. 2010; 49: 2869
  • 14 Liu DS, Tangpeerachaikul A, Selvaraj R, Taylor MT, Fox JM, Ting AY. J. Am. Chem. Soc. 2012; 134: 792
  • 15 Plass T, Milles S, Koehler C, Szymanski J, Mueller R, Wiessler M, Schultz C, Lemke EA. Angew. Chem. Int. Ed. 2012; 51: 4166
  • 16 Lang K, Davis L, Torres-Kolbus J, Chou CJ, Deiters A, Chin JW. Nat. Chem. 2012; 4: 298
  • 17 Dumas-Verdes C, Miomandre F, Lepicier E, Galangau O, Vu TT, Clavier G, Meallet-Renault R, Audebert P. Eur. J. Org. Chem. 2010; 2525
  • 18 Clavier G, Audebert P. Chem. Rev. 2010; 110: 3299
  • 19 Neunhoeffer H, Wiley PF. Chemistry of 1,2,3-Triazines, Tetrazines, and Pentazines . John Wiley & Sons; New York: 1978: 1073-1267
    • 20a Abdel-Rahman MO, Kira MA, Tolba MN. Tetrahedron Lett. 1968; 3871
    • 20b Bowie RA, Neilson DG, Watson KM, Gardner MD, Ridd V, Mahmood S. J. Chem. Soc., Perkin Trans. 1 1972; 2395
  • 21 Karver MR, Weissleder R, Hilderbrand SA. Angew. Chem. Int. Ed. 2012; 51: 920
  • 22 Audebert P, Sadki S, Miomandre F, Clavier G, Vernieres MC, Saoud M, Hapiot P. New J. Chem. 2004; 28: 387
    • 23a Sauer J, Bauerlein P, Ebenbeck W, Dyllick-Brenzinger R, Gousetis C, Sichert H, Troll T, Wallfahrer U. Eur. J. Org. Chem. 2001; 2639
    • 23b Sauer J, Bauerlein P, Ebenbeck W, Gousetis C, Sichert H, Troll T, Utz F, Wallfahrer U. Eur. J. Org. Chem. 2001; 2629
    • 24a Carter FL, Frampton VL. Chem. Rev. 1964; 64: 497
    • 24b Dowd P, Gold A. Tetrahedron Lett. 1969; 85
  • 25 Yan N, Liu XZ, Pallerla MK, Fox JM. J. Org. Chem. 2008; 73: 4283
    • 26a Best MD, Rowland MM, Bostic HE. Acc. Chem. Res. 2011; 44: 686
    • 26b Hang HC, Wilson JP, Charron G. Acc. Chem. Res. 2011; 44: 699
    • 27a Devaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R. Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 4762
    • 27b Rossin R, Verkerk PR, van den Bosch SM, Vulders RC, Verel I, Lub J, Robillard MS. Angew. Chem. Int. Ed. 2010; 49: 3375
    • 27c Selvaraj R, Liu S, Hassink M, Huang CW, Yap LP, Park R, Fox JM, Li Z, Conti PS. Bioorg. Med. Chem. Lett. 2011; 21: 5011
    • 28a Hansell CF, Espeel P, Stamenovic MM, Barker IA, Dove AP, Du Prez FE, O’Reilly RK. J. Am. Chem. Soc. 2011; 133: 13828
    • 28b Chen C, Allen CA, Cohen SM. Inorg. Chem. 2011; 50: 10534
    • 28c Haun JB, Devaraj NK, Marinelli BS, Lee H, Weissleder R. ACS Nano 2011; 5: 3204
    • 28d Han HS, Devaraj NK, Lee J, Hilderbrand SA, Weissleder R, Bawendi MG. J. Am. Chem. Soc. 2010; 132: 7838
    • 28e Haun JB, Devaraj NK, Hilderbrand SA, Lee H, Weissleder R. Nat. Nanotechnol. 2010; 5: 660
  • 29 Budin I, Devaraj NK. J. Am. Chem. Soc. 2012; 134: 751