Dtsch Med Wochenschr 2012; 137(43): 2223-2228
DOI: 10.1055/s-0032-1327232
Übersicht | Review article
Ernährungsmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Wie ist Gewichtsreduktion erfolgreich möglich?

Energiehaushalt im FokusStrategies for successful weight reductionFocus on energy balance
M. Weck
1   Weißeritztal-Kliniken, Freital-Dippoldiswalde, Klinik für Diabetologie
,
S. R. Bornstein
2   Universitätsklinikum „Carl Gustav Carus“ der TU Dresden, III Medizinische Klinik
,
A. Barthel
2   Universitätsklinikum „Carl Gustav Carus“ der TU Dresden, III Medizinische Klinik
,
M. Blüher
3   Universität Leipzig, Klinik für Innere Medizin
› Institutsangaben
Weitere Informationen

Publikationsverlauf

07. März 2012

06. September 2012

Publikationsdatum:
17. Oktober 2012 (online)

Zusammenfassung

Adipositas und Begleit- bzw. Folgeerkrankungen nehmen weltweit genauso wie in Deutschland zu.

Gewichtsabnahme und Erhalt des reduzierten Gewichts sind schwierig und diese Tatsache führte zu Studien mit der Zielstellung, Gründe für erneute Gewichtszunahme nach Gewichtsverlust zu evaluieren und Hypothesen für erfolgreichere Behandlungsoptionen zu generieren. Einige der Hauptfaktoren liegen im Energiehaushalt, insbesondere im Grundumsatz (resting metabolic rate, RMR), der non-exercise Thermogenese und der nahrungsinduzierten Thermogenese. Die hohe Rate an erneuter Gewichtszunahme nach erfolgreicher Gewichtreduktion (mehr als 80 %) ist zurückzuführen auf adaptive Vorgänge mit denen der Organismus versucht, die Energiedepots des Körpers konstant zu halten. Die so genannte „adaptive Thermogenese“ ist definiert als geringere Reduktion des Energieverbrauchs als es dem Vorhersagewert entsprechen würde. Diese verminderte Thermogenese scheint neben diätetischen Faktoren ein wesentlicher Grund für erneute Gewichtszunahme zu sein.

Hauptziel jeder Gewichtsreduktion ist der Verlust an Körperfett. Allerdings ist dies in der Regel mit einem Verlust an Muskelmasse verbunden. Diese lean body mass (LBM) ist aber die Hauptdeterminante des Grundumsatzes (RMR). Eine Reduktion der LBM bewirkt demzufolge einen Abfall des Grundumsatzes und kann so zu erneuter Gewichtszunahme führen. Somit ist es erforderlich, im Sinne einer langfristigen Gewichtsreduktion dem Abfall des Grundumsatzes und der LBM entgegen zu wirken.

In dieser Arbeit werden die Mechanismen der adaptiven Thermogenese im Hinblick auf die Entwicklung von Strategien zur Vermeidung einer erneuten Gewichtszunahme nach erfolgreicher Gewichtsreduktion diskutiert.

Abstract

The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options.

Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis.

The extremely high failure rate (> 80 %) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called “adaptive thermogenesis” is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss.

Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable.

In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction.

 
  • Literatur

  • 1 Abdel-Hamid TK. Modeling the dynamics of human energy regulation and its implications for obesity treatment. System Dynamics Rev 2002; 18: 431-471
  • 2 Astrup A, Toubro S, Dalgaard LT et al. Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation. Int J Obes 1999; 23: 1030-1034
  • 3 Baba NH, Sawaya S, Torbay N et al. High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes 1999; 23: 1202-1206
  • 4 Bitar A, Fellmann N, Vernet J et al. Variations and determinants of energy expenditure as measured by whole-body indirect calorimetry during puberty and adolescence. Am J Clin Nutr 1999; 69: 1209-1216
  • 5 Borg P, Kukkonen-Harjula K, Fogelholm M et al. Effects of walking or resistance training on weight loss maintenance in obese, middle-aged men: a randomized trial. Int J Obes Relat Metab Disord 2002; 26: 676-683
  • 6 Borsheim E, Bahr R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med 2003; 33: 1037-1060
  • 7 Bouchard C, Tremblay A. Genetic effects in human energy expenditure components. Int J Obes 1990; 14 (Suppl. 01) 49-55
  • 8 Bosy-Westphal A, Kossel E, Goele K et al. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr 2009; 90: 993-1001
  • 9 Brill JB, Perry AC, Parker L et al. Dose-response effect of walking exercise on weight loss. How much is enough?. Int J Obes 2002; 26: 1484-1493
  • 10 Byrne HK, Wilmore JH. The effects of a 20-week exercise training program on resting metabolic rate in previously sedentary, moderately obese women. Int J Sport Nutr Exerc Metab 2001; 11: 15-31
  • 11 Byrne NM, Weinsier RL, Hunter GR et al. Influence of distribution of lean body mass on resting metabolic rate after weight loss and weight regain: comparison of responses in white and black women. Am J Clin Nutr 2003; 77: 1368-1373
  • 12 Deriaz O, Fournier G, Tremblay A et al. Lean-body-mass composition and resting energy-expenditure before and after long-term overfeeding. Am J Clin Nutr 1992; 56: 840-847
  • 13 Demling RH, DeSanti L. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers. Ann Nutr Metab 2000; 44: 21-29
  • 14 Deutsche Adipositas Gesellschaft, Deutsche Diabetes Gesellschaft, Deutsche Gesellschaft für Ernährung. Deutsche Gesellschaft für Ernährungsmedizin. Evidenzbasierte Leitlinie Prävention und Therapie der Adipositas. 2007
  • 15 Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie. Chirurgische Arbeitsgemeinschaft für (Adipositastherapie (CA-ADIP) in Zusammenarbeit mit Deutsche Adipositas-Gesellschaft (DAG), Deutsche Gesellschaft für Psychosomatische Medizin und Psychotherapie, Deutsche Gesellschaft für Ernährungsmedizin. S3-Leitlinie Chirurgie der Adipositas. 2010
  • 16 Doucet E, St-Pierre S, Almeras N et al. Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001; 85: 715-723
  • 17 Doucet E, Imbeault P, St-Pierre S et al. Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci 2003; 105: 89-95
  • 18 Doucet E, St-Pierre S, Almeras N et al. Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2011; 85: 715-723
  • 19 Ehrhart-Bornstein M, Arakelyan K, Krug AW et al. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res 2004; 30: 865-70
  • 20 Evidence-based guideline of the German Nutrition Society. Carbohydrate intake and prevention of nutrition-related diseases. Ann Nutr Metab 2012; 60 (Suppl. 01) 1-58
  • 21 Farnsworth E, Luscombe ND, Noakes M et al. Effect of a high- protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr 2003; 78: 31-39
  • 22 Foster GD, Wyatt HR, Hill JO et al. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med 2003; 348: 2082-2090
  • 23 Freake HC, Oppenheimer JH. Thermogenesis and thyroid-function. Annu Rev Nutr 1995; 15: 263-291
  • 24 Glass JN, Miller WC, Szymanski LM et al. Physiological responses to weight-loss intervention in inactive obese African-American and Caucasian women. J Sports Med Phys Fitness 2002; 42: 56-64
  • 25 Goele K, Bosy-Westphal A, Rümcker B et al. Influence of changes in body composition and adaptive thermogenesis on the difference between measured and predicted weight loss in obese women. Obes Facts 2009; 2: 105-109
  • 26 Gorin AA, Phelan S, Wing RR et al. Promoting long-term weight control: does dieting consistency matter?. Int J Obes 2004; 28: 278-281
  • 27 Holzapfel C, Hauner H. Gewichtserhaltung nach Gewichtsreduktion – wie der Körper sein Gewicht verteidigt. Dtsch Med Wochenschr 2011; 136: 89-94
  • 28 Layman DK, Boileau RA, Erickson DJ et al. A reduced ratio of dietary carbohydrate to protein improves body and blood lipid profiles during weight loss in adult women. J Nutr 2003; 133: 411-417
  • 29 Leibel R, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Eng J Med 1995; 332: 621-628
  • 30 Leser MS, Yanovski SZ, Yanovski JA. A low-fat intake and greater activity level are associated with lower weight regain 3 years after completing a very-low-calorie diet. J Am Diet Assoc 2002; 102: 1252-1256
  • 31 Leslie WS, Lean MEJ, Baillie HM et al. Weight management: a comparison of existing dietary approaches in a work-site setting. Int J Obes 2002; 26: 1469-1475
  • 32 Levine JA, Eberhardt NL, Jensen MD. Role of non exercise activity thermogenesis in resitance to fat gain in humans. Science 1999; 283: 212-214
  • 33 Luscombe-Marsh ND, Noakes M, Wittert GA et al. Carbohydrate-restricted diets high in either monounsaturated fat or protein are equally effective at promoting fat loss and improving blood lipids. Am J Clin Nutr 2005; 81: 762-772
  • 34 Luscombe ND, Clifton PM, Noakes M et al. Effect of a high-protein, energy-restricted diet on weight loss and energy expenditure after weight stabilization in hyperinsulinemic subjects. Int J Obes 2003; 27: 582-590
  • 35 Maehlum S, Grandmontagne M, Newsholme EA et al. Magnitude and duration of excess postexercise oxygen-consumption in healthy-young subjects. Metabolism 1986; 35: 425-429
  • 36 Major GC, Doucet E, Trayhurn P et al. Clinical significance of adaptive thermogenesis. Int J Obes 2007; 31: 204-212
  • 37 Max Rubner-Institut, Bundesforschungsinstitut für Ernährung und Lebensmittel (Hrsg.) Nationale Verzehrstudie II. Ergebnisbericht, Teil 1, Tab. A6, 2008: 129
  • 38 Meckling KA, Gauthier M, Grubb R et al. Effects of a hypo caloric, low-carbohydrate diet on weight loss, blood lipids, blood pressure, glucose tolerance, and body composition in free-living overweight women. Can J Physiol Pharmacol 2002; 80: 1095-1105
  • 39 Menozzi R, Bondi M, Baldini A et al. Resting metabolic rate, fat-free mass and catecholamine excretion during weight loss in female obese patients. Br J Nutr 2000; 84: 515-520
  • 40 Mozaffarian D, Hao T, Rimm EB et al. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N Engl J Med 2011; 364: 25
  • 41 Müller MJ, Bosy-Westphal A, Kutzner D et al. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes Rev 2002; 3: 113-122
  • 42 Müller MJ, Grund A, Krause H et al. Determinants of fat mass in prepubertal children. Br J Nutr 2002; 88: 545-554
  • 43 Poppitt SD, Keogh GF, Prentice AM et al. Long-term effects of ad libitum low-fat, high-carbohydrate diets on body weight and serum lipids in overweight subjects with metabolic syn- drome. Am J Clin Nutr 2002; 75: 11-20
  • 44 Ravussin E, Bogardus C. Relationsships of genetics, age, and physical fitness to daily energy expenditure and fuel utilization. Am J Clin Nutr 1989; 49: 968-975
  • 45 Ravussin E, Lillioja S, Knowler WC et al. Reduced rate of energy-expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467-472
  • 46 Redman LM, Heilbronn LK, Martin CK et al. Metabolic and behavioral compensations in response to caloric restriction: Implications for the maintenance of weight loss. PLoS ONE 2009; 4: e4377
  • 47 Rosenbaum M, Hirsch J, Gallagher DA et al. Long-term persistence of adaptive thermogenesis in subjects who have maintained a reduced body weight. Am J Clin Nutr 2008; 88: 906-912
  • 48 Rosenbaum M, Kissileff HR, Mayer LES et al. Energy intake in weight-reduced humans. Brain Res 2010; 1350: 95-102
  • 49 Rosenbaum M, Leibel R. Adaptive thermogenesis in humans. Int J Obes 2010; 34: 547-555
  • 50 Ryan AS. Insulin resistance with aging: effects of diet and exercise. Sports Med 2000; 30: 327-346
  • 51 Samaha FF, Iqbal N, Seshadri P et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med 2003; 348: 2074-2081
  • 52 Saris WHM, Astrup A, Prentice AM et al. Randomized controlled trial of changes in dietary carbohydrate/ fat ratio and simple vs complex carbohydrates on body weight and blood lipids: the CARMEN study. Int J Obes 2000; 24: 1310-1318
  • 53 Schoeller DA. The energy balance equation: looking back and looking forward are two very different views. Nutr Rev 2009; 67: 249-254
  • 54 Seidell JC, Muller DC, Sorkin JD et al. Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight-gain: the Baltimore Longitudinal Study on Aging. Int J Obes 1992; 16: 667-674
  • 55 Skov AR, Toubro S, Rønn B et al. Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes 1999; 23: 528-536
  • 56 Sloth B, Krog-Mikkelsen I, Flint A et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337-347
  • 57 Sparti A, DeLany JP, de la Bretonne JA et al. Relationship between resting metabolic rate and the composition of the fat-free mass. Metabolism 1997; 46: 1225-1230
  • 58 Tataranni PA, Harper IT, Snitker S et al. Body weight gain in free-living Pima Indians: effect of energy intake vs expenditure. Int J Obes 2003; 27: 1578-1583
  • 59 Thomas DM, Ciesla A, Levine JA et al. A mathematical model of weight change with adaption. Math Biosci Eng 2009; 6: 873-887
  • 60 Torbay N, Baba NH, Sawaya S et al. High protein vs high carbohydrate hypoenergetic diet in treatment of obese normoinsulinemic and hyperinsulinemic subjects. Nutr Res 2002; 22: 587-598
  • 61 Tremblay A, Chaput JP. Adaptive reduction in thermogenesis and resistance to lose fat in obese men. Br J Nutr 2009; 102: 488-492
  • 62 Tremblay A, Major GC, Doucet E et al. Role of adaptive thermogenesis in unsuccessful weight-loss intervention. Future Lipidol 2007; 2: 651-658
  • 63 Utter AC, Nieman DC, Shannonhouse EM et al. Influence of diet and/or exercise on body composition and cardiorespiratory fitness in obese women. Int J Sport Nutr 1998; 8: 213-222
  • 64 van Aggel-Leijssen DPC, Saris WHM, Hul GB et al. Short term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. Am J Clin Nutr 2001; 73: 523-531
  • 65 van Aggel-Leijssen DP, Saris WH, Hul GB et al. Long-term effects of low-intensity exercise training on fat metabolism in weight-reduced obese men. Metabolism 2002; 51: 1003-1010
  • 66 Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol 2005; 98: 160-167
  • 67 Virtanen KA, Lidell ME, Orava J et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518-1525
  • 68 Weigle D, Sande K, Iverius P et al. Weight loss leads to a marked decrease in nonresting energy expenditure in ambulatory human subjects. Metabolism 1988; 37: 930-936
  • 69 Wilmore JH, Despres JP, Stanforth PR et al. Alterations in body weight and composition consequent to 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr 1999; 70: 346-352