Facial Plast Surg 2012; 28(06): 554-562
DOI: 10.1055/s-0032-1329930
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Pathogenesis of Infantile Hemangioma

Thuy L. Phung
1   Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
,
Marcelo Hochman
2   The Hemangioma International Treatment Center, Charleston, South Carolina
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
27. November 2012 (online)

Abstract

Cutaneous vascular anomalies are congenital disorders of abnormal vascular development and growth. Infantile hemangioma is a common type of vascular anomalies characterized by the abnormal growth of blood vessels in the early proliferative phase, followed by the gradual spontaneous regression of the lesion in the involuting phase. Over the past decade, significant advances have been made in our understanding of the cellular and molecular mechanisms that control the development, growth, and regression of infantile hemangioma. In this article, we present a comprehensive review of the current knowledge of the pathogenesis of hemangioma as well as promising research horizons and implications for new therapeutic advances.

 
  • References

  • 1 Marler JJ, Mulliken JB. Vascular anomalies: classification, diagnosis, and natural history. Facial Plast Surg Clin North Am 2001; 9: 495-504
  • 2 Haggstrom AN, Frieden IJ. Hemangiomas: past, present, and future. J Am Acad Dermatol 2004; 51 (1, Suppl) S50-S52
  • 3 Drolet BA, Esterly NB, Frieden IJ. Hemangiomas in children. N Engl J Med 1999; 341: 173-181
  • 4 Jacobs AH, Walton RG. The incidence of birthmarks in the neonate. Pediatrics 1976; 58: 218-222
  • 5 Holmdahl K. Cutaneous hemangiomas in premature and mature infants. Acta Paediatr 1955; 44: 370-379
  • 6 Burton BK, Schulz CJ, Angle B, Burd LI. An increased incidence of haemangiomas in infants born following chorionic villus sampling (CVS). Prenat Diagn 1995; 15: 209-214
  • 7 Garzon MC, Drolet BA, Baselga E , et al; Hemangioma Investigator Group. Comparison of infantile hemangiomas in preterm and term infants: a prospective study. Arch Dermatol 2008; 144: 1231-1232
  • 8 Blei F, Walter J, Orlow SJ, Marchuk DA. Familial segregation of hemangiomas and vascular malformations as an autosomal dominant trait. Arch Dermatol 1998; 134: 718-722
  • 9 Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA. Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 1999; 82: 77-83
  • 10 Bruckner AL, Frieden IJ. Hemangiomas of infancy. J Am Acad Dermatol 2003; 48: 477-493 ; quiz 494–496
  • 11 Mulliken JB, Glowacki J. Hemangiomas and vascular malformations in infants and children: a classification based on endothelial characteristics. Plast Reconstr Surg 1982; 69: 412-422
  • 12 Glowacki J, Mulliken JB. Mast cells in hemangiomas and vascular malformations. Pediatrics 1982; 70: 48-51
  • 13 Gonzalez-Crussi F, Reyes-Mugica M. Cellular hemangiomas (“hemangioendotheliomas”) in infants. Light microscopic, immunohistochemical, and ultrastructural observations. Am J Surg Pathol 1991; 15: 769-778
  • 14 Frieden IJ, Haggstrom AN, Drolet BA , et al. Infantile hemangiomas: current knowledge, future directions. Proceedings of a research workshop on infantile hemangiomas, April 7–9, 2005, Bethesda, Maryland, USA. Pediatr Dermatol 2005; 22: 383-406
  • 15 Huang SA, Tu HM, Harney JW , et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 2000; 343: 185-189
  • 16 López Gutiérrez JC, Avila LF, Sosa G, Patron M. Placental anomalies in children with infantile hemangioma. Pediatr Dermatol 2007; 24: 353-355
  • 17 North PE, Waner M, Mizeracki A, Mihm Jr MC. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 2000; 31: 11-22
  • 18 North PE, Waner M, Mizeracki A , et al. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol 2001; 137: 559-570
  • 19 Ritter MR, Moreno SK, Dorrell MI , et al. Identifying potential regulators of infantile hemangioma progression through large-scale expression analysis: a possible role for the immune system and indoleamine 2,3 dioxygenase (IDO) during involution. Lymphat Res Biol 2003; 1: 291-299
  • 20 Ritter MR, Dorrell MI, Edmonds J, Friedlander SF, Friedlander M. Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci U S A 2002; 99: 7455-7460
  • 21 Barnés CM, Huang S, Kaipainen A , et al. Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci U S A 2005; 102: 19097-19102
  • 22 North PE, Waner M, Brodsky MC. Are infantile hemangioma of placental origin?. Ophthalmology 2002; 109: 223-224
  • 23 Pittman KM, Losken HW, Kleinman ME , et al. No evidence for maternal-fetal microchimerism in infantile hemangioma: a molecular genetic investigation. J Invest Dermatol 2006; 126: 2533-2538
  • 24 Régnier S, Dupin N, Le Danff C, Wassef M, Enjolras O, Aractingi S. Endothelial cells in infantile haemangiomas originate from the child and not from the mother (a fluorescence in situ hybridization-based study). Br J Dermatol 2007; 157: 158-160
  • 25 Mihm Jr MC, Nelson JS. Hypothesis: the metastatic niche theory can elucidate infantile hemangioma development. J Cutan Pathol 2010; 37 (Suppl. 01) 83-87
  • 26 Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009; 9: 285-293
  • 27 Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res 2006; 66: 11089-11093
  • 28 Li F, Tiede B, Massagué J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 2007; 17: 3-14
  • 29 Yu Y, Flint AF, Mulliken JB, Wu JK, Bischoff J. Endothelial progenitor cells in infantile hemangioma. Blood 2004; 103: 1373-1375
  • 30 Khan ZA, Boscolo E, Picard A , et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 2008; 118: 2592-2599
  • 31 Bischoff J. Monoclonal expansion of endothelial cells in hemangioma: an intrinsic defect with extrinsic consequences?. Trends Cardiovasc Med 2002; 12: 220-224
  • 32 Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest 2001; 107: 745-752
  • 33 Kleinman ME, Blei F, Gurtner GC. Circulating endothelial progenitor cells and vascular anomalies. Lymphat Res Biol 2005; 3: 234-239
  • 34 Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 2010; 362: 1005-1013
  • 35 Razon MJ, Kräling BM, Mulliken JB, Bischoff J. Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation 1998; 5: 189-195
  • 36 Yu Y, Fuhr J, Boye E , et al. Mesenchymal stem cells and adipogenesis in hemangioma involution. Stem Cells 2006; 24: 1605-1612
  • 37 Itinteang T, Vishvanath A, Day DJ, Tan ST. Mesenchymal stem cells in infantile haemangioma. J Clin Pathol 2011; 64: 232-236
  • 38 Dadras SS, North PE, Bertoncini J, Mihm MC, Detmar M. Infantile hemangiomas are arrested in an early developmental vascular differentiation state. Mod Pathol 2004; 17: 1068-1079
  • 39 Kleinman ME, Tepper OM, Capla JM , et al. Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma. Lymphat Res Biol 2003; 1: 301-307
  • 40 Khan ZA, Melero-Martin JM, Wu X , et al. Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 2006; 108: 915-921
  • 41 Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 1994; 93: 2357-2364
  • 42 Chang J, Most D, Bresnick S , et al. Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg 1999; 103: 1-9 ; discussion 10
  • 43 Picard A, Boscolo E, Khan ZA , et al. IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 2008; 63: 263-267
  • 44 Yu Y, Wylie-Sears J, Boscolo E, Mulliken JB, Bischoff J. Genomic imprinting of IGF2 is maintained in infantile hemangioma despite its high level of expression. Mol Med 2004; 10: 117-123
  • 45 Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J. Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 2001; 159: 2271-2280
  • 46 Walter JW, North PE, Waner M , et al. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 2002; 33: 295-303
  • 47 Jinnin M, Medici D, Park L , et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 2008; 14: 1236-1246
  • 48 Tanimoto T, Jin ZG, Berk BC. Transactivation of vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is involved in sphingosine 1-phosphate-stimulated phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). J Biol Chem 2002; 277: 42997-43001
  • 49 Kliche S, Waltenberger J. VEGF receptor signaling and endothelial function. IUBMB Life 2001; 52: 61-66
  • 50 Greenberger S, Yuan S, Walsh LA , et al. Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J Invest Dermatol 2011; 131: 2467-2476
  • 51 Xu D, , O TM, Shartava A. , et al. Isolation, characterization, and in vitro propagation of infantile hemangioma stem cells and an in vivo mouse model. J Hematol Oncol 2011; 4: 54
  • 52 Hammill AM, Wentzel M, Gupta A , et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer 2011; 57: 1018-1024
  • 53 Gaumann A, Schlitt HJ, Geissler EK. Immunosuppression and tumor development in organ transplant recipients: the emerging dualistic role of rapamycin. Transpl Int 2008; 21: 207-217
  • 54 Law BK. Rapamycin: an anti-cancer immunosuppressant?. Crit Rev Oncol Hematol 2005; 56: 47-60
  • 55 Haemel AK, O'Brian AL, Teng JM. Topical rapamycin: a novel approach to facial angiofibromas in tuberous sclerosis. Arch Dermatol 2010; 146: 715-718
  • 56 Wataya-Kaneda M, Tanaka M, Nakamura A, Matsumoto S, Katayama I. A novel application of topical rapamycin formulation, an inhibitor of mTOR, for patients with hypomelanotic macules in tuberous sclerosis complex. Arch Dermatol 2012; 148: 138-139
  • 57 Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taïeb A. Propranolol for severe hemangiomas of infancy. N Engl J Med 2008; 358: 2649-2651
  • 58 Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 2001; 53: 319-356
  • 59 Starkey E, Shahidullah H. Propranolol for infantile haemangiomas: a review. Arch Dis Child 2011; 96: 890-893
  • 60 Menezes MD, McCarter R, Greene EA, Bauman NM. Status of propranolol for treatment of infantile hemangioma and description of a randomized clinical trial. Ann Otol Rhinol Laryngol 2011; 120: 686-695
  • 61 Mabeta P, Pepper MS. Hemangiomas—current therapeutic strategies. Int J Dev Biol 2011; 55: 431-437
  • 62 Fuchsmann C, Quintal MC, Giguere C , et al. Propranolol as first-line treatment of head and neck hemangiomas. Arch Otolaryngol Head Neck Surg 2011; 137: 471-478
  • 63 Storch CH, Hoeger PH. Propranolol for infantile haemangiomas: insights into the molecular mechanisms of action. Br J Dermatol 2010; 163: 269-274
  • 64 Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta-adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem 2000; 275: 13802-13811
  • 65 Iaccarino G, Ciccarelli M, Sorriento D , et al. Ischemic neoangiogenesis enhanced by beta2-adrenergic receptor overexpression: a novel role for the endothelial adrenergic system. Circ Res 2005; 97: 1182-1189
  • 66 Sommers Smith SK, Smith DM. Beta blockade induces apoptosis in cultured capillary endothelial cells. In Vitro Cell Dev Biol Anim 2002; 38: 298-304
  • 67 Yang EV, Sood AK, Chen M , et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66: 10357-10364
  • 68 Annabi B, Lachambre MP, Plouffe K, Moumdjian R, Béliveau R. Propranolol adrenergic blockade inhibits human brain endothelial cells tubulogenesis and matrix metalloproteinase-9 secretion. Pharmacol Res 2009; 60: 438-445
  • 69 Jadhav U, Chigurupati S, Lakka SS, Mohanam S. Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol 2004; 25: 1407-1414
  • 70 Calicchio ML, Collins T, Kozakewich HP. Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. Am J Pathol 2009; 174: 1638-1649
  • 71 Iso T, Hamamori Y, Kedes L. Notch signaling in vascular development. Arterioscler Thromb Vasc Biol 2003; 23: 543-553
  • 72 Krebs LT, Xue Y, Norton CR , et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000; 14: 1343-1352
  • 73 Zeng Q, Li S, Chepeha DB , et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8: 13-23
  • 74 Rehman AO, Wang CY. Notch signaling in the regulation of tumor angiogenesis. Trends Cell Biol 2006; 16: 293-300
  • 75 Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 2008; 27: 5132-5137
  • 76 Wu JK, Kitajewski JK. A potential role for notch signaling in the pathogenesis and regulation of hemangiomas. J Craniofac Surg 2009; 20 (Suppl. 01) 698-702
  • 77 Boscolo E, Stewart CL, Greenberger S , et al. JAGGED1 signaling regulates hemangioma stem cell-to-pericyte/vascular smooth muscle cell differentiation. Arterioscler Thromb Vasc Biol 2011; 31: 2181-2192
  • 78 Liu Z, Turkoz A, Jackson EN , et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J Clin Invest 2011; 121: 800-808
  • 79 Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455: 64-71
  • 80 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-297
  • 81 Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704-714
  • 82 Anand S, Cheresh DA. MicroRNA-mediated regulation of the angiogenic switch. Curr Opin Hematol 2011; 18: 171-176
  • 83 Bonauer A, Boon RA, Dimmeler S. Vascular microRNAs. Curr Drug Targets 2010; 11: 943-949
  • 84 Anand S, Majeti BK, Acevedo LM , et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010; 16: 909-914
  • 85 Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 2003; 9: 677-684
  • 86 Kimura S, Kitadai Y, Tanaka S , et al. Expression of hypoxia-inducible factor (HIF)-1alpha is associated with vascular endothelial growth factor expression and tumour angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer 2004; 40: 1904-1912
  • 87 Rathmell WK, Acs G, Simon MC, Vaughn DJ. HIF transcription factor expression and induction of hypoxic response genes in a retroperitoneal angiosarcoma. Anticancer Res 2004; 24: 167-169
  • 88 Ritter MR, Reinisch J, Friedlander SF, Friedlander M. Myeloid cells in infantile hemangioma. Am J Pathol 2006; 168: 621-628
  • 89 Kleinman ME, Greives MR, Churgin SS , et al. Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol 2007; 27: 2664-2670
  • 90 Nguyen VA, Fürhapter C, Romani N, Weber F, Sepp N. Infantile hemangioma is a proliferation of beta 4-negative endothelial cells adjacent to HLA-DR-positive cells with dendritic cell morphology. Hum Pathol 2004; 35: 739-744
  • 91 Qu Z, Liebler JM, Powers MR , et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 1995; 147: 564-573
  • 92 Tan ST, Wallis RA, He Y, Davis PF. Mast cells and hemangioma. Plast Reconstr Surg 2004; 113: 999-1011
  • 93 Ritter MR, Moreno SK, Dorrell MI , et al. Identifying potential regulators of infantile hemangioma progression through large-scale expression analysis: a possible role for the immune system and indoleamine 2,3 dioxygenase (IDO) during involution. Lymphat Res Biol 2003; 1: 291-299
  • 94 Takikawa O, Yoshida R, Kido R, Hayaishi O. Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase. J Biol Chem 1986; 261: 3648-3653
  • 95 Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002; 196: 459-468
  • 96 Sidbury R, Neuschler N, Neuschler E , et al. Topically applied imiquimod inhibits vascular tumor growth in vivo. J Invest Dermatol 2003; 121: 1205-1209
  • 97 Sauder DN. Immunomodulatory and pharmacologic properties of imiquimod. J Am Acad Dermatol 2000; 43 (1 Pt 2) S6-S11