Informationen aus Orthodontie & Kieferorthopädie 2012; 44(04): 293-301
DOI: 10.1055/s-0032-1331161
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Orale Dysfunktionen in der kieferorthopädischen Praxis: der Anteil des peripheren und des zentralen Nervensystems auf die Lage der Zunge bei Mundatmung

Orthodontic Practice and Oral Dysfunction: Involvement of Peripheral and Central Nervous System in Tongue Posture During Oral Respiration
T. Ono
1   Orthodontic Science, Graduate School, Tokyo Medical and Dental University, Japan
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
09. Januar 2013 (online)

Zusammenfassung

Die kieferorthopädische Behandlung von Patienten, die durch den Mund atmen, stellt eine große Herausforderung dar. Die Auswirkungen der Mundatmung auf Wachstum und Entwicklung der kraniofazialen Strukturen sind zwar hinreichend bekannt. Allerdings liegen bisher nur eingeschränkte Informationen darüber vor, auf welche Weise der physiologische Mechanismus der Mundatmung eine Behandlung erschwert. Im vorliegenden Beitrag wird die Physiologie der Zungenlage und deren Fehlfunktionen besprochen mit dem Ziel, zum Verständnis der Behandlung der Mundatmung beizutragen.

Abstract

Orthodontic treatment of patients who breathe through the mouth is challenging. Although the effects of oral respiration on growth and development of the craniofacial region has been documented, there is limited information on how the physiological mechanism of oral respira­tion makes treatment difficult. In this article, the physiology of tongue posture and its dysfunction are elucidated to improve understanding of the treatment of oral respiration.

 
  • Literatur

  • 1 Cheng S, Butler JE, Gandevia SC et al. Movement of the tongue during normal breathing in awake healthy humans. J Physiol 2008; 586 (Pt 17) 4283-4294
  • 2 Withington-Wray DJ, Mifflin SW, Spyer KM. Intracellular analysis of respiratory-modulated hypoglossal motoneurons in the cat. Neuroscience 1988; 25 (03) 1041-1051
  • 3 Takahashi S, Ono T, Ishiwata Y et al. Effect of changes in the breathing mode and body position on tongue pressure with respiratory-related oscillations. Am J Orthod Dentofacial Orthop 1999; 115 (03) 239-246
  • 4 Takahashi S, Ono T, Ishiwata Y et al. Breathing modes, body positions, and suprahyoid muscle activity. J Orthod 2002; 29 (04) 307-313
  • 5 van Lunteren E, Salomone RJ, Manubay P et al. Contractile and endurance properties of geniohyoid and diaphragm muscles. J Appl Physiol 1990; 69 (06) 1992-1997
  • 6 van Lunteren E, Manubay P. Contractile properties of feline genioglossus, sternohyoid, and sternothyroid muscles. J Appl Physiol 1992; 72 (03) 1010-1015
  • 7 Bracher A, Coleman R, Schnall R et al. Histochemical properties of upper airway muscles: comparison of dilator and nondilator muscles. Eur Respir J 1997; 10 (05) 990-993
  • 8 Tsuiki S, Ono T, Ishiwata Y et al. Functional divergence of human genioglossus motor units with respiratory-related activity. Eur Respir J 2000; 15 (05) 906-910
  • 9 Linder-Aronson S, Woodside DG. Excessive Face Height Malocclusion: Etiology, Diagnosis, and Treatment. Quintessence Publishing Co. Inc.; Chicago IL: 2000
  • 10 Miller AJ, Vargervik K. Neuromuscular adaptation in experimentally induced oral respiration in the rhesus monkey (Macaca mulatta). Arch Oral Biol 1980; 25 (8–9) 579-589
  • 11 Harvold EP, Tomer BS, Vargervik K et al. Primate experiments on oral respiration. Am J Orthod 1981; 79 (04) 359-372
  • 12 Miller AJ, Vargervik K, Chierici G. Sequential neuromuscular changes in rhesus monkeys during the initial adaptation to oral respiration. Am J Orthod 1982; 81 (02) 99-107
  • 13 Vargervik K, Miller AJ, Chierici G et al. Morphologic response to changes in neuromuscular patterns experimentally induced by altered modes of respiration. Am J Orthod 1984; 85 (02) 115-124
  • 14 Miller AJ, Vargervik K, Chierici G. Experimentally induced neuromuscular changes during and after nasal airway obstruction. Am J Orthod 1984; 85 (05) 385-392
  • 15 Türker KS. Reflex control of human jaw muscles. Crit Rev Oral Biol Med 2002; 13 (01) 85-104
  • 16 Ono T, Ishiwata Y, Kuroda T. Inhibition of masseteric electromyographic activity during oral respiration. Am J Orthod Dentofacial Orthop 1998; 113 (05) 518-525
  • 17 Davis RA, Davis L. Decerebrate rigidity in animals. Neurosurgery 1981; 9 (01) 79-89
  • 18 Solow B, Kreiborg S. Soft-tissue stretching: a possible control factor in craniofacial morphogenesis. Scand J Dent Res 1977; 85 (06) 505-507
  • 19 Rubin RM. Mode of respiration and facial growth. Am J Orthod 1980; 78 (05) 504-510
  • 20 Principato JJ. Upper airway obstruction and craniofacial morphology. Otolaryngol Head Neck Surg 1991; 104 (06) 881-890
  • 21 Woodside DG, Linder-Aronson S, Lundstrom A et al. Mandibular and maxillary growth after changed mode of breathing. Am J Orthod Dentofacial Orthop 1991; 100 (01) 1-18
  • 22 Vig KW. Nasal obstruction and facial growth: the strength of evidence for clinical assumptions. Am J Orthod Dentofacial Orthop 1998; 113 (06) 603-611
  • 23 Harari D, Redlich M, Miri S et al. The effect of mouth breathing versus nasal breathing on dentofacial and craniofacial development in orthodontic patients. Laryngoscope 2010; 120 (10) 2089-2093
  • 24 Otani-Saito K, Ono T, Ishiwata Y et al. Modulation of the stretch reflex of jaw-closing muscles in different modes and phases of respiration. Angle Orthod 2001; 71 (03) 201-209
  • 25 Schoen R. Untersuchungen über Zungen- und Kieferreflexe: I. Mitteilung. Der Kieferzungenreflex und andere propriozeptive Reflexe der Zunge und der Kiefermuskulatur. Arch Exp Pathol Pharmakol 1931; 160 (01) 29-48
  • 26 Blom S. Afferent influence on tongue muscle activity. Acta Physiol Scand Suppl 1960; 49 (170) 1-97
  • 27 Lowe AA. Excitatory and inhibitory inputs to hypoglossal motoneurons and adjacent reticular formation neurons in cats. Exp Neurol 1978; 62 (01) 30-47
  • 28 Lowe AA. Mandibular joint control of genioglossus muscle activity in the cat (Felis domesticus) and monkey (Macaca irus). Arch Oral Biol 1978; 23 (09) 787-793
  • 29 Lowe AA, Sessle BJ. Tongue activity during respiration, jaw opening, and swallowing in cat. Can J Physiol Pharmacol 1973; 51 (12) 1009-1011
  • 30 Morimoto T, Takebe H, Sakan I et al. Reflex activation of extrinsic tongue muscles by jaw closing muscle proprioceptors. Jpn J Physiol 1978; 28 (04) 461-471
  • 31 Sumino R, Nakamura Y. Synaptic potentials of hypoglossal motoneurons and a common inhibitory interneuron in the trigemino-hypoglossal reflex. Brain Res 1974; 73 (03) 439-454
  • 32 Morimoto T, Takata M, Kawamura Y. Inhibition of hypoglossal motoneurons by a masseteric nerve volley. Brain Res 1972; 43 (01) 285-288
  • 33 Morimoto T, Kawamura Y. Inhibitory postsynaptic potentials of hypoglossal motoneurons of the cat. Exp Neurol 1972; 37 (01) 188-198
  • 34 Duggan AW, Lodge D, Biscoe TJ. The inhibition of hypoglossal motoneurones by impulses in the glossopharyngeal nerve of the rat. Exp Brain Res 1973; 17 (03) 261-270
  • 35 Ishiwata Y, Ono T, Kuroda T et al. Jaw-tongue reflex: afferents, central pathways, and synaptic potentials in hypoglossal motoneurons in the cat. J Dent Res 2000; 79 (08) 1626-1634
  • 36 Valera FC, Trawitzki LV, Anselmo-Lima WT. Myofunctional evaluation after surgery for tonsils hypertrophy and its correlation to breathing pattern: a 2-year-follow up. Int J Pediatr Otorhinolaryngol 2006; 70 (02) 221-225
  • 37 Georgalas C. The role of the nose in snoring and obstructive sleep apnoea: an update. Eur Arch Otorhinolaryngol 2011; 268 (09) 1365-1373
  • 38 Schünke M, Schulte E, Schumacher U. Prometheus. LernAtlas der Anatomie. Kopf, Hals und Neuroanatomie. Illustrationen von M. Voll und K. Wesker. 3. überarb. Aufl. Stuttgart: Thieme; 2012