Synthesis 2013; 45(13): 1886-1898
DOI: 10.1055/s-0033-1338865
paper
© Georg Thieme Verlag Stuttgart · New York

Explorations into the Potential of Chiral Sulfonium Reagents to Effect Asymmetric Halonium Additions to Isolated Alkenes

Alexandria P. Brucks
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA   Fax: +1(212)9321289   Email: sas2197@columbia.edu
,
Daniel S. Treitler
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA   Fax: +1(212)9321289   Email: sas2197@columbia.edu
,
Shu-An Liu
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA   Fax: +1(212)9321289   Email: sas2197@columbia.edu
,
Scott A. Snyder*
Department of Chemistry, Columbia University, Havemeyer Hall, 3000 Broadway, New York, NY 10027, USA   Fax: +1(212)9321289   Email: sas2197@columbia.edu
› Author Affiliations
Further Information

Publication History

Received: 17 April 2013

Accepted: 06 May 2013

Publication Date:
13 June 2013 (online)


Dedicated to Prof. Scott E. Denmark on the occasion of his 60th birthday

Abstract

While methods for the racemic dihalogenation and halohydroxylation of alkenes have been known for decades, enantioselective variants of these processes remain elusive. Initial attempts were made to overcome this long-standing challenge by exploring the potential of chiral, crystalline, sulfur-derived halonium reagents to accomplish the asymmetric dichlorination and iodohydroxylation of 1,2-dihydronaphthalene. Asymmetric dichlorination of this substrate was achieved in 57% yield and 14% enantiomeric excess (ee), but asymmetric iodohydroxylation was much more successful, giving 67% yield and 63% ee. Thorough studies were made of these processes, including investigation of various chiral sulfide derivatives, their substrate scopes, and the reaction conditions.

Supporting Information

 
  • References


    • For recent reviews, see:
    • 1a Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306
    • 1b Castellanos A, Fletcher SP. Chem. Eur. J. 2011; 17: 5766
    • 1c Snyder SA, Treitler DS, Brucks AP. Aldrichimica Acta 2011; 44: 27
    • 1d Hennecke U. Chem. Asian J. 2012; 7: 456
    • 1e Snyder SA, Brucks AP In Asymmetric Synthesis II: More Methods and Applications. Christmann M, Bräse S. Wiley–VCH; Weinheim: 2012. Chap. 20
    • 1f Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 2a Juliá S, Ginebreda A. Tetrahedron Lett. 1979; 23: 2171
    • 2b Tanaka Y, Sakuraba H, Nakanishi H. J. Chem. Soc., Chem. Commun. 1983; 947
    • 2c Adam W, Mock-Knoblauch C, Saha-Möller CR, Herderich M. J. Am. Chem. Soc. 2000; 122: 9685
    • 2d Sakurada I, Yamasaki S, Göttlich R, Iida T, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 1245
    • 2e El-Qisairi AK, Qaseer HA, Katsigras G, Lorenzi P, Trivedi U, Tracz S, Hartman A, Miller JA, Henry PM. Org. Lett. 2003; 5: 439
    • 2f Snyder SA, Tang Z.-Y, Gupta R. J. Am. Chem. Soc. 2009; 131: 5744
    • 2g Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134

    • For examples of asymmetric seleniranium and thiiranium ions see:
    • 2h Denmark SE, Voler T. Chem. Eur. J. 2009; 15: 11737
    • 2i Denmark SE, Kalyani D, Collins WR. J. Am. Chem. Soc. 2010; 132: 15752
    • 2j Denmark SE, Kornfilt DJ. P, Vogler T. J. Am. Chem. Soc. 2011; 133: 15308
    • 2k Denmark SE, Burk MT. Org. Lett. 2012; 14: 256

      For pioneering work on bromonium transfer, see:
    • 3a Bellucci G, Bianchini R, Chiappe C, Marioni F, Ambrosetti R, Brown RS, Slebocka-Tilk H. J. Am. Chem. Soc. 1989; 111: 2640
    • 3b Bennet AJ, Brown RS, McClung RE. D, Klobukowski M, Aarts GH. M, Santarsiero BD, Bellucci G, Bianchini R. J. Am. Chem. Soc. 1991; 113: 8532
    • 3c Brown RS, Nagorski RW, Bennet AJ, McClung RE. D, Aarts GH. M, Klobukowski M, McDonald R, Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448

    • For additional critical studies, see:
    • 3d Rodebaugh R, Fraser-Reid B. Tetrahedron 1996; 52: 7663
    • 3e Chiappe C, De Rubertis A, Jaber A, Lenoir D, Wattenbach C, Pomelli CS. J. Org. Chem. 2002; 67: 7066
    • 3f Denmark SE, Burk MT, Hoover AJ. J. Am. Chem. Soc. 2010; 132: 1232
    • 4a Snyder SA, Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
    • 4b Snyder SA, Treitler DS, Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
    • 4c Snyder SA, Treitler DS, Brucks AP, Sattler W. J. Am. Chem. Soc. 2011; 133: 15898
    • 4d Snyder SA, Treitler DS. Org. Synth. 2011; 88: 54
    • 4e Snyder SA, Brucks AP, Treitler DS, Moga I. J. Am. Chem. Soc. 2012; 134: 17714

    • For additional applications of these reagents, see:
    • 4f Snyder SA, Wright NE, Pflueger JJ, Breazzano SP. Angew. Chem. Int. Ed. 2011; 50: 8629
    • 4g Snyder SA, Gollner A, Chiriac MI. Nature (London) 2011; 474: 461
    • 4h Lin H, Pochapsky SS, Krauss IJ. Org. Lett. 2011; 13: 1222
    • 4i Stefan E, Taylor RE. Org. Lett. 2012; 14: 3490
    • 4j Bonney KJ, Braddock DC. J. Org. Chem. 2012; 77: 9574 ; BDSB is currently available from Sigma-Aldrich as product number 751987
    • 5a Furukawa N, Sugihara Y, Fujihara H. J. Org. Chem. 1989; 54: 4222
    • 5b Breau L, Durst T. Tetrahedron: Asymmetry 1991; 2: 367
    • 5c Aggarwal VK, Ford JG, Thompson A, Jones RV. H, Standen MC. H. J. Am. Chem. Soc. 1996; 118: 7004
    • 5d Julienne K, Metzner P, Henryon V, Greiner A. J. Org. Chem. 1998; 63: 4532
    • 5e Aggarwal VK, Ford JG, Fonquerna S, Adams H, Jones RV. H, Fieldhouse R. J. Am. Chem. Soc. 1998; 120: 8328
    • 5f Aggarwal VK, Angelaud R, Bihan D, Blackburn P, Fieldhouse R, Fonquerna SJ, Ford GD, Hynd G, Jones E, Jones RV. H, Jubault P, Palmer MJ, Ratcliffe PD, Adams H. J. Chem. Soc., Perkin Trans. 1 2001; 2604
    • 5g Zanardi J, Leriverend C, Aubert D, Julienne K, Metzner P. J. Org. Chem. 2001; 66: 5620
    • 5h Bellenie BR, Goodman JM. Chem. Commun. (Cambridge) 2004; 1076
    • 5i Davoust M, Brière J.-F, Jaffrès P.-A, Metzner P. J. Org. Chem. 2005; 70: 4166
    • 5j Illa O, Arshad M, Ros A, McGarrigle EM, Aggarwal VK. J. Am. Chem. Soc. 2010; 132: 1828
    • 6a Pfaltz A, Drury WJ. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 5723
    • 6b Mellah M, Voituriez A, Schulz E. Chem. Rev. 2007; 107: 5133
  • 7 Lieser JK. Synth. Commun. 1983; 13: 765
    • 8a Fujihara H, Akaishi R, Furukawa N. Bull. Chem. Soc. Jpn. 1987; 60: 4451
    • 8b Olah GA, Vankar YD, Fung AP. Synthesis 1979; 59
  • 9 The chlorodimethylsulfonium chloride reagent has been used previously for electrophilic aromatic substitution, see: Olah GA, Ohannesian L, Arvanaghi M. Synthesis 1986; 868
  • 10 Chlorosulfonium chloride derivatives are known to be unstable at room temperature as seen with the Swern reagent: Mancuso AJ, Huang S.-L, Swern D. J. Org. Chem. 1978; 43: 2480

    • While this may be possible, the participation of a monomeric unit is more likely, as previously shown with related bromonium and iodonium reagents, see:
    • 11a Neverov AA, Brown RS. J. Org. Chem. 1998; 63: 5977
    • 11b Haas J, Piguel S, Wirth T. Org. Lett. 2002; 4: 297 . The presence of adventitious water could explain the ee values observed in entries 1–7 of Table 2
  • 12 Masuda H, Takase K, Nishio M, Hasegawa A, Nishiyama Y, Ishii Y. J. Org. Chem. 1994; 59: 5550
  • 13 Piccinini A, Kavanagh SA, Connon PB, Connon SJ. Org. Lett. 2010; 12: 608
  • 14 Lees WJ, Singh R, Whitesides GM. J. Org. Chem. 1991; 56: 7328
  • 15 Yamamoto Y, Hoshino J, Fujimoto Y, Ohmoto J, Sawada S. Synthesis 1993; 298
  • 16 In a similar system, a C 2-symmetrical cyclic selenium catalyst has been used to perform enantioselective bromoaminations, see: Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
  • 17 Foubelo F, Moreno B, Soler T, Yus M. Tetrahedron 2005; 61: 9082
    • 18a Cambie RC, Hayward RC, Roberts JL, Rutledge PS. J. Chem. Soc., Perkin Trans. 1 1974; 1864
    • 18b Garnier JM, Robin S, Rousseau G. Eur. J. Org. Chem. 2007; 3281
  • 19 For a pioneering recent example, see: Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
  • 20 Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
    • 21a Boyd DR, Sharma ND, Bowers NI, Boyle R, Harrison JS, Lee K, Bugg TD. H, Gibson DT. Org. Biomol. Chem. 2003; 1: 1298
    • 21b Varela JA, González-Rodríguez C, Rubin SG, Castedo L, Saá C. J. Am. Chem. Soc. 2006; 128: 9576
  • 22 Adamczyk M, Watt DS, Netzel DA. J. Org. Chem. 1984; 49: 4226
  • 23 Hoye TR, Jeffrey CS, Shao F. Nature Protoc. 2007; 2: 2451
    • 24a Déziel R, Goulet S, Grenier L, Bordeleau J, Bernier J. J. Org. Chem. 1993; 58: 3619
    • 24b Prasad KR. K, Joshi NN. J. Org. Chem. 1996; 61: 3888
    • 24c Kumar GD. K, Chavarria GE, Charlton-Sevcik AK, Arispe WM, MacDonough MT, Strecker TE, Chen S.-E, Siim BG, Chaplin DJ, Trawick ML, Pinney KG. Bioorg. Med. Chem. Lett. 2010; 20: 1415
  • 25 Terao Y, Aono M, Imai N, Achiwa K. Chem. Pharm. Bull. 1987; 35: 1734
  • 26 Hanaya T, Nakamura Y, Yamamoto H. Heterocycles 2007; 74: 983
  • 27 Izmer VV, Lebedev AY, Nikulin MV, Ryabov AN, Asachenko AF, Lygin AV, Sorokin DA, Voskoboynikov AZ. Organometallics 2006; 25: 1217
    • 28a Stavber G, Iskra J, Zupan M, Stavber S. Adv. Synth. Catal. 2008; 350: 2921
    • 28b Pandit P, Gayen KS, Khamarui S, Chatterjee N, Maiti DK. Chem. Commun. (Cambridge) 2011; 47: 6933