Synthesis 2013; 45(14): 1939-1945
DOI: 10.1055/s-0033-1338891
feature article
© Georg Thieme Verlag Stuttgart · New York

A Practical Protocol for Asymmetric Synthesis of Wieland–Miescher and Hajos–Parrish Ketones Catalyzed by a Simple Chiral Primary Amine

Changming Xu
Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. of China    Fax: +86(10)62554449   Email: luosz@iccas.ac.cn
,
Long Zhang
Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. of China    Fax: +86(10)62554449   Email: luosz@iccas.ac.cn
,
Pengxin Zhou
Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. of China    Fax: +86(10)62554449   Email: luosz@iccas.ac.cn
,
Sanzhong Luo*
Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. of China    Fax: +86(10)62554449   Email: luosz@iccas.ac.cn
,
Jin-Pei Cheng
Beijing National Laboratory for Molecule Sciences (BNLMS), CAS Key Laboratory for Molecular Recognition and Function, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. of China    Fax: +86(10)62554449   Email: luosz@iccas.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 18 March 2013

Accepted after revision: 06 May 2013

Publication Date:
06 June 2013 (online)


Abstract

This article describes a simple chiral primary amine catalyzed efficient and practical protocol for the large-scale synthesis of Wieland–Miescher and Hajos–Parrish ketones as well as their analogues­.

Supporting Information

 
  • References

    • 1a Eder U, Sauer G, Wiechert R. Angew. Chem. 1971; 83: 492
    • 1b Hajos ZG, Parrish DR. J. Org. Chem. 1973; 38: 3239
    • 1c Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 1d Micheli RA, Hajos ZG, Cohen N, Parrish DR, Portland LA, Sciamanna W, Scott MA, Wehrli PA. J. Org. Chem. 1975; 40: 675

      For examples, see:
    • 3a Danishefsky SJ, Masters JJ, Young WB, Link JT, Snyder LB, Magee TV, Jung DK, Isaacs RC. A, Bornmann WG, Alaimo CA, Coburn CA, DiGrandi MJ. J. Am. Chem. Soc. 1996; 118: 2843
    • 3b Moher ED, Collins JL, Grieco PA. J. Am. Chem. Soc. 1992; 114: 2764
    • 3c Paquette LA, Wang TZ, Philippo CM. G, Wang SP. J. Am. Chem. Soc. 1994; 116: 3367
    • 3d Smith III AB, Kingerywood J, Leenay TL, Nolen EG, Sunazuka T. J. Am. Chem. Soc. 1992; 114: 1438
    • 3e Stahl P, Kissau L, Mazitschek R, Huwe A, Furet P, Giannis A, Waldmann H. J. Am. Chem. Soc. 2001; 123: 11586
    • 3f Waters SP, Tian Y, Li YM, Danishefsky SJ. J. Am. Chem. Soc. 2005; 127: 13514
    • 3g Lee HM, Nieto-Oberhuber C, Shair MD. J. Am. Chem. Soc. 2008; 130: 16864
    • 4a Rajagopal D, Rajagopalan K, Swaminathan S. Tetrahedron: Asymmetry 1996; 7: 2189
    • 4b Rajagopal D, Narayanan R, Swaminathan S. Tetrahedron Lett. 2001; 42: 4887
    • 4c Davies SG, Sheppard RL, Smith AD, Thomson JE. Chem. Commun. 2005; 3802
    • 4d D’Elia V, Zwicknagl H, Oliver R. J. Org. Chem. 2008; 73: 3262
    • 4e Kanger T, Kriis K, Laars M, Kailas T, Müürisepp A.-M, Pehk T, Lopp M. J. Org. Chem. 2007; 72: 5168
    • 4f Zhang XM, Wang M, Tu YQ, Fan CA, Jiang YJ, Zhang SY, Zhang FM. Synlett 2008; 2831
    • 4g Mori K, Katoh T, Suzuki T, Noji T, Yamanaka M, Akiyama T. Angew. Chem. Int. Ed. 2009; 48: 9652
    • 4h Fuentes de Arriba AL, Seisdedos DG, Simón L, Alcázar V, Raposo C, Morán JR. J. Org. Chem. 2010; 75: 8303
    • 4i Bradshaw B, Etxebarria-Jardi G, Bonjoch J, Viózquez SF, Guillena G, Nájera C. Adv. Synth. Catal. 2009; 351: 2482
  • 5 Zhong G, Hoffmann T, Lerner RA, Danishefsky S, Barbas III CF. J. Am. Chem. Soc. 1997; 119: 8131
  • 6 Bui T, Barbas III CF. Tetrahedron Lett. 2000; 41: 6951
  • 7 Zhou PX, Zhang L, Luo SZ, Cheng J.-P. J. Org. Chem. 2012; 77: 2526

    • For an account, see:
    • 8a Zhang L, Luo S. Synlett 2012; 23: 1575

    • For recent examples, see:
    • 8b Luo SZ, Li JY, Xu H, Zhang L, Cheng J.-P. Org. Lett. 2007; 9: 3675
    • 8c Luo SZ, Xu H, Li JY, Zhang L, Cheng J.-P. J. Am. Chem. Soc. 2007; 129: 3074
    • 8d Luo SZ, Li JY, Zhang L, Xu H, Cheng J.-P. Chem. Eur. J. 2008; 14: 1273
    • 8e Luo SZ, Xu H, Chen LJ, Cheng J.-P. Org. Lett. 2008; 10: 1775
    • 8f Luo SZ, Xu H, Zhang L, Li JY, Cheng J.-P. Org. Lett. 2008; 10: 653
    • 8g Luo SZ, Zheng XX, Cheng J.-P. Chem. Commun. 2008; 5719
    • 8h Luo S, Qiao Y, Zhang L, Li J, Li X, Cheng J.-P. J. Org. Chem. 2009; 74: 9521
    • 8i Luo SZ, Zhou PX, Li JY, Cheng J.-P. Chem. Eur. J. 2010; 16: 4457
    • 8j Zhou PX, Luo SZ, Cheng J.-P. Org. Biomol. Chem. 2011; 9: 1784
  • 9 Hu SS, Zhang L, Li JY, Luo SZ, Cheng J.-P. Eur. J. Org. Chem. 2011; 3347
    • 10a Agami C, Meynier F, Puchot C, Guilhem J, Pascard C. Tetrahedron 1984; 40: 1031
    • 10b Agami C. Bull. Soc. Chim. Fr. 1988; 3: 499
    • 10c Agami C, Levisalles J, Puchot C. J. Chem. Soc., Chem. Commun. 1985; 441
    • 10d Agami C, Puchot C. J. Mol. Catal. 1986; 38: 341
    • 10e Brown KL, Damm L, Dunitz JD, Eschenmoser A, Hobi R, Kratky C. Helv. Chim. Acta 1978; 61: 3108
    • 10f List B, Hoang L, Martin HJ. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5839
    • 10g Bahmanyar S, Houk KN. J. Am. Chem. Soc. 2001; 123: 11273
    • 10h Bahmanyar S, Houk KN. J. Am. Chem. Soc. 2001; 123: 12911
    • 10i Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2003; 125: 16
    • 10j Clemente FR, Houk KN. Angew. Chem. Int. Ed. 2004; 43: 5766
    • 10k Clemente FR, Houk KN. J. Am. Chem. Soc. 2005; 127: 11294
  • 11 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven TJr. Kudin K. N, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM. W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, revision E.01 . Gaussian Inc; Wallingford (CT, USA): 2004
    • 12a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 12b Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785

      For a recent review, see:
    • 13a Cheong PH.-Y, Legault CY, Um JM, Çelebi-Ölçüm N, Houk KN. Chem. Rev. 2011; 111: 5042

    • For selected examples, see refs. 10g, 10h, 10k and:
    • 13b Bahmanyar S, Houk KN, Martin HJ, List B. J. Am. Chem. Soc. 2003; 125: 2475
    • 13c Cheong PH.-Y, Houk KN. J. Am. Chem. Soc. 2004; 126: 13912
    • 13d Gordillo R, Houk KN. J. Am. Chem. Soc. 2006; 128: 3543
    • 13e Allemann C, Um JM, Houk KN. J. Mol. Catal. A: Chem. 2010; 324: 31
    • 13f Antoline JE, Krenske EH, Lohse AG, Houk KN, Hsung RP. J. Am. Chem. Soc. 2011; 133: 14443
    • 13g Lam Y.-H, Houk KN, Scheffler U, Mahrwald R. J. Am. Chem. Soc. 2012; 134: 6286