Synlett 2013; 24(18): 2350-2364
DOI: 10.1055/s-0033-1338987
account
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Allylic Alkylation of Allyl Dienol Carbonates: Reactivity, Regioselectivity, Enantioselectivity, and Synthetic Applications

Stellios Arseniyadis*
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Jérémy Fournier
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Saravanan Thangavelu
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Oscar Lozano
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Sébastien Prevost
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Alexis Archambeau
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Candice Menozzi
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
,
Janine Cossy*
Laboratoire de Chimie Organique, ESPCI ParisTech, CNRS (UMR 7084), 10 rue Vauquelin, 75231 Paris Cedex 05, France   Fax: +33(1)40794662   Email: stellios.arseniyadis@espci.fr   Email: janine.cossy@espci.fr
› Author Affiliations
Further Information

Publication History

Received: 10 September 2013

Accepted after revision: 24 September 2013

Publication Date:
18 October 2013 (online)


Abstract

For the past several years, the group has focused on the development of useful synthetic tools and on executing creative and efficient routes to biologically active natural products. In this context, we recently applied the palladium-catalyzed decarboxylative allylic alkylation reaction to a new class of substrates, namely allyl dienol carbonates. This method allowed a particularly straightforward access to a wide variety of heterocycles, including 2,4-disubstituted-, 2,3,4- and 2,3,5-trisubstituted-, and 2,3,4,5-tetrasubstituted furans and pyrroles, starting from simple and readily available substrates. An asymmetric version of this method was also developed and applied to the synthesis of enantiomerically enriched butenolides and butyrolactones bearing all-carbon α- and β-quaternary stereogenic centers, respectively. This asymmetric transformation was eventually used as a key step in the total synthesis of two natural products: (–)-nephrosteranic acid and (–)-roccellaric acid. This account summarizes the results of our endeavors.

1 Introduction

2 Palladium-Catalyzed Decarboxylative Allylic Alkylation of Allyl Dienol Carbonates

2.1 Synthesis of Polysubstituted Furans

2.2 Synthesis of Polysubstituted Pyrroles

3 Asymmetric Palladium-Catalyzed Decarboxylative Allylic Alkylation of Allyl Dienol Carbonates

3.1 Synthesis of Enantiomerically Enriched Butenolides

3.2 Synthesis of Enantiomerically Enriched Furanones

3.3 Synthesis of Enantiomerically Enriched Butyrolactones

3.4 Total Syntheses of (–)-Nephrosteranic Acid and (–)-Roccellaric Acid

4 Conclusion

 
  • References

  • 1 Shimizu I, Yamada T, Tsuji J. Tetrahedron Lett. 1980; 21: 3199
  • 2 Tsuda T, Chujo Y, Nishi S, Tawara K, Saegusa T. J. Am. Chem. Soc. 1980; 102: 6381
    • 4a Rayabarapu DK, Tunge JA. J. Am. Chem. Soc. 2005; 127: 13510
    • 4b Mohr JT, Behenna DC, Harned AW, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 4c Trost BM, Bream RN, Xu J. Angew. Chem. Int. Ed. 2006; 45: 3109
    • 4d Singh OV, Han H. J. Am. Chem. Soc. 2007; 129: 774
    • 4e Wang C, Tunge JA. J. Am. Chem. Soc. 2008; 130: 8118
    • 4f Bi H, Chen W, Liang Y, Li C. Org. Lett. 2009; 11: 3246

      For decarboxylative couplings of nitrile-stabilized anions, see:
    • 5a Tsuji J, Yamada T, Minami I, Yuhara M, Nisar M, Shimizu I. J. Org. Chem. 1987; 52: 2988
    • 5b Waetzig SR, Rayabarapu DK, Weaver JD, Tunge JA. Angew. Chem. Int. Ed. 2006; 45: 4977
    • 5c Yin L, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 9610
    • 6a Behenna DC, Mohr JT, Sherden NH, Marinescu SC, Harned AM, Tani K, Seto M, Ma S, Novák Z, Krout MR, McFadden RM, Roizen JL, Enquist JA, White DE, Levine SR, Petrova KV, Iwashita A, Virgil SC, Stoltz BM. Chem. Eur. J. 2011; 17: 14199
    • 6b McDougal N, Virgil S, Stoltz B. Synlett 2010; 1712
  • 7 Mao B, Ji Y, Fañanás-Mastral M, Caroli G, Meetsma A, Feringa BL. Angew. Chem. Int. Ed. 2012; 51: 3168
  • 8 Weaver JD, Tunge JA. Org. Lett. 2008; 10: 4657
  • 9 Grenning AJ, Tunge JA. Org. Lett. 2010; 12: 740
    • 10a Burger EC, Tunge JA. J. Am. Chem. Soc. 2006; 128: 10002
    • 10b Yeagley AA, Chruma JJ. Org. Lett. 2007; 9: 2879
  • 11 Waetzig SR, Tunge JA. J. Am. Chem. Soc. 2007; 129: 4138
  • 12 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
  • 13 Burger EC, Tunge JA. Org. Lett. 2004; 6: 4113
    • 14a Trost BM, Xu J. J. Am. Chem. Soc. 2005; 127: 2846
    • 14b Trost BM, Xu J, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 15a Liu Y, Du H. Org. Lett. 2013; 15: 740
    • 15b Valli M, Bruno P, Sbarbada D, Porta A, Vidari G, Zanoni G. J. Org. Chem. 2013; 78: 5556
    • 15c Yang X.-F, Yu W.-H, Ding C.-H, Ding Q.-P, Wan S.-L, Hou X.-L, Dai L.-X, Wang P.-J. J. Org. Chem. 2013; 78: 6503
    • 15d Tao Z.-L, Zhang W.-Q, Chen D.-F, Adele A, Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
    • 15e Uberman PM, Caira MR, Martín SE. Organometallics 2013; 32: 3220
    • 15f Montgomery TD, Zhu Y, Kagawa N, Rawal VH. Org. Lett. 2013; 15: 1140
    • 15g Fournier J, Arseniyadis S, Cossy J. Angew. Chem. Int. Ed. 2012; 51: 7562
    • 15h Behenna DC, Liu Y, Yurino T, Kim J, White DE, Virgil SC, Stoltz BM. Nat. Chem. 2012; 4: 130
    • 15i Milhau L, Guiry PJ. Top. Organomet. Chem. 2012; 38: 95
    • 15j Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 120: 264
    • 15k Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
    • 16a Trost BM, Wrobleski ST, Chisholm JD, Harrington PE, Jung M. J. Am. Chem. Soc. 2005; 127: 13589
    • 16b Trost BM, Lehr K, Michaelis DJ, Xu J, Buckl AK. J. Am. Chem. Soc. 2010; 132: 8915
    • 16c Trost BM, Stiles DT. Org. Lett. 2007; 9: 2763
    • 16d McFadden RM, Stoltz BM. J. Am. Chem. Soc. 2006; 128: 7738
    • 16e Enquist JA. Jr, Stoltz BM. Nature 2008; 453: 1228
    • 16f Seto M, Roizen JL, Stoltz BM. Angew. Chem. Int. Ed. 2008; 47: 6873
    • 16g White DE, Stewart IC, Grubbs RH, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 810
    • 16h Fournier J, Lozano O, Menozzi C, Arseniyadis S, Cossy J. Angew. Chem. Int. Ed. 2013; 52: 1257
  • 17 Keith JA, Behenna DC, Sherden N, Mohr JT, Ma S, Marinescu SC, Nielsen RJ, Oxgaard J, Stoltz BM, Goddard WA. J. Am. Chem. Soc. 2012; 134: 19050
  • 18 Tsuji J, Shimizu I. Tetrahedron Lett. 1983; 24: 1793
  • 19 Herrinton PM, Klotz KL, Hartley WM. J. Org. Chem. 1993; 58: 678
    • 20a Dash J, Arseniyadis S, Cossy J. Adv. Synth. Catal. 2007; 349: 152
    • 20b Gebauer J, Arseniyadis S, Cossy J. Org. Lett. 2007; 9: 3425
    • 20c Hoffman TJ, Rigby JH, Arseniyadis S, Cossy J. J. Org. Chem. 2008; 73: 2400
    • 20d Gebauer J, Arseniyadis S, Cossy J. Eur. J. Org. Chem. 2008; 2701
    • 20e Hoffman TJ, Dash J, Rigby JH, Arseniyadis S, Cossy J. Org. Lett. 2009; 11: 2756
    • 20f Hoffman TJ, Kolleth A, Rigby JH, Arseniyadis S, Cossy J. Org. Lett. 2010; 12: 3348
    • 20g Dash J, Melillo B, Arseniyadis S, Cossy J. Tetrahedron Lett. 2011; 52: 2246
    • 21a Cope AC, Hardy EM. J. Am. Chem. Soc. 1940; 62: 441
    • 21b Staroverov VN, Davidson ER. J. Mol. Struct. (Theochem) 2001; 573: 81
    • 21c Dupuis M, Murray C, Davidson ER. J. Am. Chem. Soc. 1991; 113: 9756
    • 21d Bluthe N, Malacria M, Gore J. Tetrahedron Lett. 1983; 24: 1157
  • 22 All 3-aryl-, 3-hetaryl and 3-vinylfuranyl carbonates were prepared from 3-bromo-2,5-dihydrofuran-2(5H)-one by sequential Suzuki coupling and base-mediated O-acylation.
  • 23 To prevent any [3,3]-sigmatropic Cope rearrangement from occurring during the purification process, the column chromatography must be performed without adsorbing the crude residue onto silica.
    • 24a Kirsch SF. Org. Biomol. Chem. 2006; 4: 2076
    • 24b Keay BA. Chem. Soc. Rev. 1999; 28: 209
    • 25a Minato H, Nagasaki T. J. Chem. Soc. C 1966; 377
    • 25b Jefford CW, Sledeski AW, Rossier J.-C, Boukouvalas J. Tetrahedron Lett. 1990; 31: 5741
  • 26 Vassilikogiannakis G, Stratakis M. Angew. Chem. Int. Ed. 2003; 42: 5465
    • 27a Clarke PA, Santos S, Martin WH. C. Green Chem. 2007; 9: 438
    • 27b Wender PA, Bi FC, Gamber GG, Gosselin F, Hubbard RD, Scanio MJ. C, Sun R, Williams TJ, Zhang L. Pure Appl. Chem. 2002; 74: 25
    • 27c Wender PA, Handy ST, Wright DL. Chem. Ind. (London) 1997; 765
    • 27d Wender PA, Miller BL In Organic Synthesis: Theory and Applications . Hudlicky T., Ed.; Vol. 2. JAI Press; Greenwich: 1993: 27

      In this context, we recently reported a one-pot uninterrupted hydrosilylation/cross-metathesis/protodesilylation sequence for the synthesis of α,β-unsaturated lactones bearing a pendant (E)-olefin, see:
    • 28a Bressy C, Bargiggia F, Guyonnet M, Arseniyadis S, Cossy J. Synlett 2009; 565
    • 28b Bressy C, Vors J.-P, Hillebrand S, Arseniyadis S, Cossy J. Angew. Chem, Int. Ed. 2008; 47: 10137
  • 29 Zhang J, Blazecka PG, Belmont D, Davidson JG. Org. Lett. 2002; 4: 4559
  • 30 Trofimov NA, Nedolya NA In Comprehensive Heterocyclic Chemistry III . Vol. 3. Katritzky AR, Ramsden CA, Scriven EF. V, Taylor RJ. K. Elsevier; Oxford: 2008: 45

    • For some recent references on the synthesis of pyrroles, see:
    • 31a Misra NC, Panda K, Ila H, Junjappa H. J. Org. Chem. 2007; 72: 1246
    • 31b Huang X, Shen R, Zhang T. J. Org. Chem. 2007; 72: 1534
    • 31c Galliford CV, Scheidt KA. J. Org. Chem. 2007; 72: 1811
    • 31d StCyr DJ, Martin N, Arndtsen BA. Org. Lett. 2007; 9: 449
    • 31e Harrison TJ, Kozak JA, Corbella-Pane M, Dake GR. J. Org. Chem. 2006; 71: 4525
    • 31f Zanatta N, Schneider JM. F. M, Schneider PH, Wouters AD, Bonacorso HG, Martins MA. P, Wessjohann LA. J. Org. Chem. 2006; 71: 6996
    • 31g Lu L, Chen G, Ma S. Org. Lett. 2006; 8: 835
    • 31h Binder JT, Kirsch SF. Org. Lett. 2006; 8: 2151
    • 31i Hiroya K, Matsumoto S, Ashikawa M, Ogiwara K, Sakamoto T. Org. Lett. 2006; 8: 5349
    • 31j Crawley ML, Goljer I, Jenkins DJ, Mehlmann JF, Nogle L, Dooley R, Mahaney PE. Org. Lett. 2006; 8: 5837
    • 31k Michailovski A, Grunwaldt JD, Baiker A, Kiebach R, Bensch W, Patzke GR. Angew. Chem. Int. Ed. 2005; 44: 5644
    • 31l Balme G. Angew. Chem. Int. Ed. 2004; 43: 6238
    • 31m Bharadwaj AR, Scheidt KA. Org. Lett. 2004; 6: 2465
    • 31n Dhawan R, Arndtsen BA. J. Am. Chem. Soc. 2004; 126: 468
    • 31o Yu M, Pagenkopf BL. Org. Lett. 2003; 5: 5099
    • 31p Gabriele B, Salerno G, Fazio A. J. Org. Chem. 2003; 68: 7853 and references cited therein
    • 31q Smith ND, Huang D, Cosford ND. P. Org. Lett. 2002; 4: 3537
    • 31r Kel’in AV, Sromek AW, Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074

      For reviews on major classes of butenolide-containing natural products, see:
    • 32a (Acetogenins): Alali FW, Liu X.-X, McLaughlin JL. J. Nat. Prod. 1999; 62: 504
    • 32b (Cardiac Steroids and Cardenolides): Hanson JR. Nat. Prod. Rep. 2002; 19: 381 and earlier reviews in this series
    • 32c (Furanocembranoid Diterpenes): Rodriguez AD. Tetrahedron 1995; 51: 4571
    • 32d (Lignans): Ward RS. In Recent Advances in the Chemistry of Lignans . Vol. 24, Part E. Atta-ur-Rahman, Ed. Elsevier; Amsterdam: 2000: 739

      For reviews on synthetic approaches to butenolides, see:
    • 33a Brückner R. Curr. Org. Chem. 2001; 5: 679
    • 33b Knight DW. Contemp. Org. Synth. 1994; 1: 287
    • 33c Rao YS. Chem. Rev. 1976; 76: 625
    • 34a Moïse J, Arseniyadis S, Cossy J. Org. Lett. 2007; 9: 1695
    • 34b Moïse J, Sonawane RP, Corsi C, Wendeborn SV, Arseniyadis S, Cossy J. Synlett 2008; 2617
    • 35a Grieco PA, Nishizawa M, Marinovic N, Ehmann WJ. J. Am. Chem. Soc. 1976; 98: 7102
    • 35b Andrieux J, Barton DH. R, Patin H. J. Chem. Soc., Perkin Trans. 1 1977; 359
  • 36 von Matt P, Pfaltz A. Angew. Chem. Int. Ed. 1993; 32: 566
    • 37a Bandichhor R, Nosse B, Reiser O. Top. Curr. Chem. 2005; 243: 43
    • 37b Kitson RR. A, Millemaggi A, Taylor RJ. K. Angew. Chem. Int. Ed. 2009; 48: 9426

      For selective examples of syntheses of optically active γ-butyrolactones, see:
    • 38a Evans DA, Kozlowski MC, Murry JA, Burgey CS, Campos KR, Connell BT, Staples RJ. J. Am. Chem. Soc. 1999; 121: 669
    • 38b Carswell EL, Snapper ML, Hoveyda AH. Angew. Chem. Int. Ed. 2006; 45: 7230
    • 38c Ube H, Shimada N, Terada M. Angew. Chem. Int. Ed. 2010; 49: 1858
    • 39a Maier MS, Marimon DI. G, Stortz CA, Adler MT. J. Nat. Prod. 1999; 62: 1565
    • 39b Park BK, Nakagawa M, Hirota A, Nakayama M. J. Antibiot. 1988; 41: 751

      For isolation, see:
    • 40a Asahina Y, Yanagita M, Sakurai Y. Ber. Dtsch. Chem. Ges. B 1937; 70: 227

    • For synthesis, see:
    • 40b Mao B, Geurts K, Fañanás-Mastral M, van Zijl AW, Fletcher SP, Minnaard AJ, Feringa BL. Org. Lett. 2011; 13: 948
    • 40c Fernandes RA, Chowdhury AK. Eur. J. Org. Chem. 2011; 1106
    • 40d Perepogu AK, Raman D, Murty US. N, Rao VJ. Synth. Commun. 2010; 40: 686
    • 40e Barreto CB. Jr, Pereira VL. P. Tetrahedron Lett. 2009; 50: 6389
    • 40f Bazin S, Feray L, Vanthuyne N, Siri D, Bertranda MP. Tetrahedron 2007; 63: 77
    • 40g Schleth F, Vogler T, Harms K, Studer A. Chem. Eur. J. 2004; 10: 4171
    • 40h Schleth F, Studer A. Angew. Chem. Int. Ed. 2004; 43: 313
    • 40i Chhor RB, Nosse B, Söergel S, Böhm C, Seitz M, Reiser O. Chem. Eur. J. 2003; 9: 260
    • 40j Barros MT, Maycock CD, Venture MR. Org. Lett. 2003; 5: 4097
    • 40k Sibi MP, Liu P, Ji J, Hajra S, Chen J.-X. J. Org. Chem. 2002; 67: 1738
    • 40l Jacobi PA, Herradura P. Can. J. Chem. 2001; 79: 1727
    • 40m Takahata H, Uchida Y, Momose T. J. Org. Chem. 1995; 60: 5628
    • 40n Takahata H, Uchida Y, Momose T. Tetrahedron Lett. 1994; 35: 4123

      For isolation, see:
    • 41a Hesse O. J. Prakt. Chem. 1898; 57: 232

    • For synthesis, see:
    • 41b Blanc D, Madec J, Popowyck F, Ayad T, Phansavath P, Ratovelomanana-Vidal V, Genêt J.-P. Adv. Synth. Catal. 2007; 349: 943
    • 41c Braukmüller S, Brückner R. Eur. J. Org. Chem. 2006; 9: 2110
    • 41d Pohmakotr M, Harnying W, Tuchinda P, Reutrakul V. Helv. Chim. Acta 2002; 85: 3792
    • 41e Böhm C, Reiser O. Org. Lett. 2001; 3: 1355
    • 41f Bella M, Margarita R, Orlando C, Orsini M, Parlanti L, Piancatelli G. Tetrahedron Lett. 2000; 41: 561
    • 41g Chen M.-J, Liu R.-S. Tetrahedron Lett. 1998; 39: 9465
    • 41h Martin T, Rodriguez CM, Martin VS. J. Org. Chem. 1996; 61: 6450
    • 41i Mulzer J, Salimi N, Hartl N. Tetrahedron: Asymmetry 1993; 4: 457
    • 42a Gissot A, N’Gouela S, Matt C, Wagner A, Mioskowski C. J. Org. Chem. 2004; 69: 8997
    • 42b Kornblum N. J. Am. Chem. Soc. 1956; 78: 1501
    • 42c Kornblum N, Wade PA. J. Org. Chem. 1973; 38: 1418
  • 43 The spectroscopic and physical data for 28 and 29 were consistent with those reported in the literature for (–)-nephrosteranic acid and (–)-roccellaric acid, respectively: 28 {[α]D 20 –13.8 (c 0.5, CHCl3); lit. [α]D 22 –27.2 (c 1.45, CHCl3)}, 29 {[α]D 20 –14.9 (c 0.45, CHCl3), lit. [α]D 22 –27.0 (c 1.73, CHCl3)}.