Synthesis 2013; 45(15): 2051-2069
DOI: 10.1055/s-0033-1339176
review
© Georg Thieme Verlag Stuttgart · New York

Carbon–Sulfur Bond Formation via Metal-Catalyzed Allylations of Sulfur Nucleophiles

Wei Liu
Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Lu, Shanghai 200092, P. R. of China   Fax: +86(21)65981376   eMail: xmzhao08@mail.tongji.edu.cn
,
Xiaoming Zhao*
Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Lu, Shanghai 200092, P. R. of China   Fax: +86(21)65981376   eMail: xmzhao08@mail.tongji.edu.cn
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 01. März 2013

Accepted after revision: 08. April 2013

Publikationsdatum:
10. Juli 2013 (online)


Abstract

The development of practical approaches for the construction of carbon–sulfur bonds is of interest to scientists. In particular, carbon–sulfur bond formation by transition-metal-catalyzed allylations has been attracting great attention. Allylic sulfides are important substances owing to their broad applications in synthetic and pharmaceutical areas. The alkene and sulfur moieties in allylic sulfides can lead to numerous transformations. This review details the development of carbon–sulfur bond formation through palladium-catalyzed rearrangements, palladium-catalyzed allylations, ­iridium-catalyzed regio- and enantioselective allylations and miscellaneous metal-catalyzed allylic substitutions. Carbon–selenium bond formations via metal-catalyzed allylic substitutions are also reviewed.

1 Introduction

2 Carbon–Sulfur Bond Formation via Palladium-Catalyzed Reactions

2.1 Rearrangements of Allylic Substrates

2.2 Allylations

2.3 Asymmetric Allylations

3 Carbon–Sulfur Bond Formation via Iridium-Catalyzed Regio­- and Enantioselective Allylations

4 Carbon–Sulfur Bond Formation via Miscellaneous Metal-Catalyzed Reactions

4.1 Nickel

4.2 Ruthenium

4.3 Gallium

4.4 Iron

5 Carbon–Selenium Bond Formation via Metal-Catalyzed Allylic­ Substitutions

6 Conclusions

 
  • References

  • 1 Fraústo da Silva JR, Williams RJ. P. The Biological Chemistry of the Elements . Oxford University Press; New York: 2001
  • 2 Thuillier A, Metzner P. Sulfur Reagents in Organic Synthesis . Academic Press; New York: 1994
  • 3 2010 Top 200 Branded Drugs by Retail Dollars. Drug Topics, 2010. http://drugtopics.modernmedicine.com/drug-topics/news/modernmedicine/modern-medicine-news/2010-top-200-branded-drugs-retail-dollars.
  • 4 Patai S, Rapoport Z, Stirling C. The Chemistry of Functional Groups: Sulfones and Sulfoxides . Wiley; New York: 1988
  • 5 Carruthers W, Coldham I. Modern Methods of Organic Synthesis: Functionalization of Alkenes . Cambridge University Press; Cambridge: 2004: 315
    • 6a Procter DJ. J. Chem. Soc., Perkin Trans. 1 2001; 335
    • 6b Kondo T, Mitsudo TA. Chem. Rev. 2000; 100: 3205
    • 6c Enders D, Luettgen K, Narine AA. Synthesis 2007; 959
    • 6d Clayden J, MacLellan P. Beilstein J. Org. Chem. 2011; 7: 582
  • 7 Ogawa A. J. Organomet. Chem. 2000; 611: 463
  • 8 Wojaczynska E, Wojaczynski J. Chem. Rev. 2010; 110: 4303
  • 9 Pudovik AN, Aladzheva IM. Zh. Obshch. Khim. 1960; 30: 2617
  • 10 Yamada Y, Mukai K, Yoshioka H, Tamaru Y, Yoshida Z. Tetrahedron Lett. 1979; 20: 5015
  • 11 Burn AJ, Cadogan JI. G. J. Chem. Soc. 1961; 5532
  • 12 Teichmann H, Hilgetag G. Angew. Chem. 1967; 79: 1077
  • 13 Stec WJ, Uznanski B, Michalski J. J. Org. Chem. 1976; 41: 1291
  • 14 Tamaru Y, Yoshida Z, Yamada Y, Mukai K, Yoshioka H. J. Org. Chem. 1983; 48: 1293
  • 15 Oae S, Uchida Y In The Chemistry of Sulfones and Sulfoxides . Stirling JM. Wiley; New York: 1988: 583
  • 16 Trost BM, Ghardiri MR. J. Am. Chem. Soc. 1986; 108: 1098
  • 17 Gais HJ, Vollhardt J, Lindner HJ. Angew. Chem. 1986; 98: 916
  • 18 Hiroi K, Kitayama R, Sato S. J. Chem. Soc., Chem. Commun. 1983; 1470
  • 19 Hiroi K, Kitayama R, Sato S. J. Chem. Soc., Chem. Commun. 1984; 303
  • 20 Hiroi K, Kitayama R, Sato S. Chem. Lett. 1984; 929
  • 21 Hiroi K, Makino K. Chem. Lett. 1986; 617
  • 22 Auburn PR, Whelan J, Bosnich B. Organometallics 1986; 5: 1533
  • 23 Smith SG. J. Am. Chem. Soc. 1961; 83: 4285
  • 24 Overman LE. Angew. Chem. Int. Ed. 1984; 23: 579
  • 25 Schenk TG, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2058
  • 26 Tamaru Y, Nagao K, Bando T, Yoshida Z. J. Org. Chem. 1990; 55: 1823
  • 27 Böhme A, Gais HJ. Tetrahedron: Asymmetry 1999; 10: 2511
  • 28 Gais HJ, Böhme A. J. Org. Chem. 2002; 67: 1153
  • 29 Jagusch T, Gais HJ, Bondarev O. J. Org. Chem. 2004; 69: 2731
  • 30 Overman LE, Roberts SW, Sneddon HF. Org. Lett. 2008; 10: 1485
  • 31 Kleimark J, Prestat G, Poli G, Norrby PO. Chem. Eur. J. 2011; 17: 13963
  • 32 Overman LE, Campbell CB, Knoll FM. J. Am. Chem. Soc. 1978; 100: 4822
  • 33 Tsuji J, Takahashi H, Morikawa M. Tetrahedron Lett. 1965; 49: 4387
    • 34a Trost BM, VanVranken DL. Chem. Rev. 1996; 96: 395
    • 34b Johannsen M, Jorgensen KA. Chem. Rev. 1998; 98: 1689
    • 34c Saitoh A, Achiwa K, Tanaka K, Morimoto T. J. Org. Chem. 2000; 65: 4227
    • 34d Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 34e Tamaru Y. Eur. J. Org. Chem. 2005; 2647
    • 34f Mohr JT, Stoltz BM. Chem. Asian J. 2007; 2: 1476
    • 34g Muzart J. Eur. J. Org. Chem. 2007; 3077
    • 34h Lu Z, Ma SM. Angew. Chem. Int. Ed. 2008; 47: 258
    • 34i Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 34j Poli G, Prestat G, Liron F, Kammerer-Pentier C. Top. Organomet. Chem. 2012; 38: 1
  • 35 Hegedus LL, McCabe RW. Catalyst Poisoning . Marcel Dekker; New York: 1984
  • 36 Inomata K, Yamamoto T, Kotake H. Chem. Lett. 1981; 10: 1357
  • 37 Hutton AT In Comprehensive Coordination Chemistry . Wilkinson G. Pergamon; Oxford: 1984: 1151
  • 38 Auburn PR, Whelan J, Bosnich B. J. Chem. Soc., Chem. Commun. 1986; 146
  • 39 Harano K, Taguchi T. Chem. Pharm. Bull. 1972; 20: 2348
  • 40 Gaffney TR, Ibers JA. Inorg. Chem. 1982; 21: 2860
  • 41 Harano K, Ohizumi N, Hisano T. Tetrahedron Lett. 1985; 26: 4203
  • 42 Lu X, Ni Z. Synthesis 1987; 66
  • 43 Trost BM, Scanlan TS. Tetrahedron Lett. 1986; 27: 4141
  • 44 Goux C, Lhoste P, Sinou D. Tetrahedron Lett. 1992; 33: 8099
  • 45 Goux C, Lhoste P, Sinou D. Tetrahedron 1994; 50: 10321
  • 46 Moreno-Mañas M, Pleixats R, Villarroya M. Tetrahedron 1993; 49: 1457
  • 47 Divekar S, Safi M, Soufiaoui M, Sinou D. Tetrahedron 1999; 55: 4369
  • 48 Felpin FX, Landais Y. J. Org. Chem. 2005; 70: 6441
  • 49 Biffis A, Zecca M, Basato M. J. Mol. Catal. A: Chem. 2001; 173: 249
  • 50 Komine N, Sako A, Hirahara SY, Hirano M, Komiya S. Chem. Lett. 2005; 34: 246
  • 51 Cornils B, Herrmann WA. Aqueous-Phase Organmoetallic Catalysis Concepts and Applications. Wiley-VCH; Weinheim: 1998
  • 52 Chandrasekhar S, Jagadeshwar V, Saritha B, Narsihmulu C. J. Org. Chem. 2005; 70: 6506
  • 53 Maitro G, Prestat G, Madec D, Poli G. Synlett 2006; 1055
  • 54 Maitro G, Prestat G, Madec D, Poli G. J. Org. Chem. 2006; 71: 7449
  • 55 Trost B, Weber L, Strege P, Fullerton T, Dietsche T. J. Am. Chem. Soc. 1978; 100: 3426
  • 56 Uozumi Y, Suzuka T. Synthesis 2008; 1960
  • 57 Lindström UM. Chem. Rev. 2002; 102: 2751
  • 58 Eichelmann H, Gais HJ. Tetrahedron: Asymmetry 1995; 6: 643
  • 59 Gais HJ, Eichelmann H, Spalthoff N, Gerhards F, Frank M, Raabe G. Tetrahedron: Asymmetry 1998; 9: 235
  • 60 Frank M, Gais HJ. Tetrahedron: Asymmetry 1998; 9: 3353
  • 61 Gais HJ, Jagusch T, Spalthoff N, Gerhards F, Frank M, Raabe G. Chem. Eur. J. 2003; 9: 4202
  • 62 Trost BM, Organ MG, Odoherty GA. J. Am. Chem. Soc. 1995; 117: 9662
  • 63 Trost BM, Crawley ML, Lee CB. J. Am. Chem. Soc. 2000; 122: 6120
  • 64 Sinou D, Divekar S, Safi M, Soufiaoui M. Sulfur Lett. 1999; 22: 125
  • 65 Lüssem BJ, Gais HJ. J. Org. Chem. 2004; 69: 4041
  • 66 Gais HJ, Theil F. Enzyme Catalysis in Organic Synthesis . Vol. II. Drauz K, Waldmann H. Wiley-VCH; Weinheim: 2002: 335
  • 67 Gais HJ, Spalthoff N, Jagusch T, Frank M, Raabe G. Tetrahedron Lett. 2000; 41: 3809
    • 68a Bartels B, Garcia-Yebra C, Rominger F, Helmchen G. Eur. J. Inorg. Chem. 2002; 2569
    • 68b Miyabe H, Takemoto Y. Synlett 2005; 1641
    • 68c Takeuchi R, Kezuka S. Synthesis 2006; 3349
    • 68d Gnamm C, Broedner K, Krauter CM, Helmchen G. Chem. Eur. J. 2009; 15: 10514
    • 68e Han SB, Kim IS, Krische MJ. Chem. Commun. 2009; 7278
    • 68f Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
    • 68g Hartwig JF, Pouy MJ. Top. Organomet. Chem. 2011; 34: 169
    • 68h He H, Ye KY, Wu QF, Dai LX, You SL. Adv. Synth. Catal. 2012; 354: 1084
    • 68i Liu WB, Xia JB, You SL. Top. Organomet. Chem. 2012; 38: 155
    • 68j Tosatti P, Nelson A, Marsden SP. Org. Biomol. Chem. 2012; 10: 3147
  • 69 Ueda M, Hartwig JF. Org. Lett. 2010; 12: 92
  • 70 Xu QL, Dai LX, You SL. Org. Lett. 2010; 12: 800
  • 71 Xu QL, Liu WB, Dai LX, You SL. J. Org. Chem. 2010; 75: 4615
  • 72 Zheng SC, Gao N, Liu W, Liu DG, Zhao XM, Cohen T. Org. Lett. 2010; 12: 4454
  • 73 Lin YA, Chalker JM, Floyd N, Bernardes GJ. L, Davis BG. J. Am. Chem. Soc. 2008; 130: 9642
  • 74 Bach T, Körber C. J. Org. Chem. 2000; 65: 2358
  • 75 Reggelin M. Top. Curr. Chem. 2007; 275: 1
  • 76 Gao N, Zheng S, Yang W, Zhao X. Org. Lett. 2011; 13: 1514
  • 77 Huang WQ, Zheng SC, Tang JL, Zhao XM. Org. Biomol. Chem. 2011; 9: 7897
  • 78 Marsh BJ, Carbery DR. J. Org. Chem. 2009; 74: 3186
  • 79 Peschiulli A, Procuranti B, O’Connor CJ, Connon SJ. Nat. Chem. 2010; 2: 380
  • 80 Zheng SC, Huang WQ, Gao N, Cui RM, Zhang M, Zhao XM. Chem. Commun. 2011; 47: 6969
  • 81 Li A, Dai L, Aggarwal VK. Chem. Rev. 1997; 86: 2341
  • 82 Gao N, Guo XW, Zheng SC, Yang WK, Zhao XM. Tetrahedron 2012; 68: 9413
  • 83 Takanori O, Naoya K, Masakatsu S. Angew. Chem. Int. Ed. 2012; 51: 8551
  • 84 Urbanski MJ, Chen R, Demarest KT, Gunnet J, Look R, Ericson E, Murray WV, Rybczynski PJ, Zhang X. Bioorg. Med. Chem. Lett. 2003; 13: 4031
  • 85 Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 8652
  • 86 Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
  • 87 Gao N, Zhao XM. Eur. J. Org. Chem. 2013; 2708
  • 88 Cuvigny T, Julia M. J. Organomet. Chem. 1983; 250: c21
  • 89 Yatsumonji Y, Ishida Y, Tsubouchi A, Takeda T. Org. Lett. 2007; 9: 4603
  • 90 Kondo T, Morisaki Y, Uenoyama SY, Wada K, Mitsudo TA. J. Am. Chem. Soc. 1999; 121: 8657
  • 91 Zaitsev AB, Caldwell HF, Pregosin PS, Veiros LF. Chem. Eur. J. 2009; 15: 6468
  • 92 Tanaka S, Pradhan PK, Maegawa Y, Kitamura M. Chem. Commun. 2010; 46: 3996
  • 93 Jaisankar P, Tanaka S, Kitamura M. J. Org. Chem. 2011; 76: 1894
  • 94 Han XP, Wu JM. Org. Lett. 2010; 12: 5780
  • 95 Jegelka M, Plietker B. Org. Lett. 2009; 11: 3462
  • 96 Jegelka M, Plietker B. Chem. Eur. J. 2011; 17: 10417
  • 97 Holzwarth MS, Frey W, Plietker B. Chem. Commun. 2011; 47: 11113
  • 98 Hsieh CH, Darensbourg MY. J. Am. Chem. Soc. 2010; 132: 14118
  • 99 Wirth T. Organoselenium Chemistry: Modern Developments in Organic Synthesis. Springer; Berlin: 2000
  • 100 Reich HJ. J. Org. Chem. 1975; 40: 2570
  • 101 Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4208
  • 102 Fitzner JN, Shea RG, Fankhauser JE, Hopkins PB. J. Org. Chem. 1985; 50: 419
  • 103 Mugesh G, du Mont WW, Sies H. Chem. Rev. 2001; 101: 2125
  • 104 Back TG. Organoselenium Chemistry: A Practical Approach. Oxford; New York: 1990
  • 105 Miyoshi N, Ishii H, Murai S, Sonoda N. Chem. Lett. 1979; 8: 873
  • 106 Krief A, Laval AM. Chem. Rev. 1999; 99: 745
  • 107 Fukuzawa S, Fujinami T, Sakai S. Chem. Lett. 1990; 927
  • 108 Tabuchi T, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986; 27: 601
  • 109 Zhao XJ, Zhao HR, Huang X. Chin. Chem. Lett. 2002; 13: 396
  • 110 Nishino T, Nishiyama Y, Sonoda N. Chem. Lett. 2003; 32: 918
  • 111 Nishino T, Okada M, Kuroki T, Watanabe T, Nishiyama Y, Sonoda N. J. Org. Chem. 2002; 67: 8696
  • 112 Waetzig SR, Tunge JA. Chem. Commun. 2008; 3311
  • 113 Saha A, Ranu BC. Org. Biomol. Chem. 2011; 9: 1763
  • 114 Bremberg U, Lutsenko S, Kaiser NF, Larhed M, Hallberg A, Moberg C. Synthesis 2000; 1004
  • 115 Cui R, Guo X, Zheng S, Zhao X. Chin. J. Chem. 2012; 30: 2647