Synlett 2013; 24(18): 2407-2410
DOI: 10.1055/s-0033-1339670
letter
© Georg Thieme Verlag Stuttgart · New York

Insight into β-Hairpin Stability: Interstrand Hydrogen Bonding

Emma Danelius
Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden   Fax: +46(31)771394   eMail: mate@chem.gu.se
,
Ulrika Brath
Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden   Fax: +46(31)771394   eMail: mate@chem.gu.se
,
Máté Erdélyi*
Department of Chemistry and Molecular Biology, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg, Sweden   Fax: +46(31)771394   eMail: mate@chem.gu.se
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 16. Juli 2013

Accepted: 02. August 2013

Publikationsdatum:
28. August 2013 (online)


Abstract

For evaluation of the role of interstrand hydrogen bonding for β-hairpin stability, two cyclic peptides differing only in side chain hydroxy-to-methyl substitution were designed and synthesized on solid phase following the Fmoc–t-Bu–Trt protection strategy. Subsequent to cyclization in solution, combined computational and experimental ensemble analysis revealed higher conformational stability of the peptide capable of interstrand hydrogen bonding.

Supporting Information

 
  • References

  • 1 Wilmot CM, Thornton JM. Protein. Eng. 1990; 3: 479
  • 2 Wilmot CM, Thornton JM. J. Mol. Biol. 1988; 203: 221
  • 3 Cooper WJ, Waters ML. Curr. Opin. Chem. Biol. 2005; 9: 627
  • 4 Daidone I, Simona F, Roccatano D, Broglia RA, Tiana G, Colombo G, Di Nola A. Proteins 2004; 57: 198
  • 5 Descours A, Moehle K, Renard A, Robinson JA. ChemBioChem 2002; 3: 318
  • 6 Obrecht D, Chevalier E, Moehle K, Robinson JA. Drug Discovery Today: Technol. 2012; 9; e63
  • 7 DeMarco SJ, Henze H, Lederer A, Moehle K, Mukherjee R, Romagnoli B, Robinson JA, Brianza F, Gombert FO, Lociuro S, Ludin C, Vrijbloed JW, Zumbrunn J, Obrecht JP, Obrecht D, Brondani V, Hamy F, Klimkait T. Bioorg. Med. Chem. 2006; 14: 8396
  • 8 Lewandowska A, Oldziej S, Liwo A, Scheraga HA. Biophys. Chem. 2010; 151: 1
  • 9 Cox JP, Evans PA, Packman LC, Williams DH, Woolfson DN. J. Mol. Biol. 1993; 234: 483
  • 10 Blanco FJ, Rivas G, Serrano L. Nat. Struct. Biol. 1994; 1: 584
  • 11 Searle MS, Williams DH, Packman LC. Nat. Struct. Biol. 1995; 2: 999
  • 12 Blanco FJ, Jimenez MA, Pineda A, Rico M, Santoro J, Nieto JL. Biochemistry (Moscow) 1994; 33: 6004
  • 13 Searle MS, Zerella R, Williams DH, Packman LC. Protein. Eng. 1996; 9: 559
  • 14 Varedian M, Erdelyi M, Persson A, Gogoll A. J. Pept. Sci. 2009; 15: 107
  • 15 Erdelyi M, Varedian M, Sköld C, Niklasson IB, Nurbo J, Persson A, Bergquist J, Gogoll A. Org. Biomol. Chem. 2008; 6: 4356
  • 16 Minor DL. Jr, Kim PS. Nature (London) 1994; 367: 660
  • 17 Smith CK, Withka JM, Regan L. Biochemistry 1994; 33: 5510
  • 18 Kobayashi N, Honda S, Yoshii H, Munekata E. Biochemistry 2000; 39: 6564
  • 19 Erdelyi M, Langer V, Karlén A, Gogoll A. New J. Chem. 2002; 26: 834
  • 20 McCallister EL, Alm E, Baker D. Nat. Struct. Biol. 2000; 7: 669
  • 21 Erdelyi M, Karlén A, Gogoll A. Chem. Eur. J. 2005; 12: 403
  • 22 Fisher MJ, Gunn B, Harms CS, Kline AD, Mullaney JT, Nunes A, Scarborough RM, Arfsten AE, Skelton MA, Um SL, Utterback BG, Jakubowski JA. J. Med. Chem. 1997; 40: 2085
  • 23 Malesevic M, Strijowski U, Bachle D, Sewald N. J. Biotechnol. 2004; 112: 73
  • 24 White CJ, Yudin AK. Nature Chem. 2011; 3: 509
    • 25a Jacobsen EN. NMR Spectroscopy Explained. Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology. John Wiley and Sons; New Jersey: 2007: 1st ed.; 435-436
    • 25b Jacobsen EN. NMR Spectroscopy Explained. Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology. John Wiley and Sons; New Jersey: 2007: 1st ed.; 580-586
  • 26 Das C, Raghothama S, Balaram P. J. Am. Chem. Soc. 1998; 120: 5812
  • 27 Haque TS, Little JC, Gellman SH. J. Am. Chem. Soc. 1994; 116: 4105
  • 28 Gallo EA, Gellman SH. J. Am. Chem. Soc. 1994; 116: 11560
  • 29 Wishart DS, Sykes BD, Richards FM. J. Mol. Biol. 1991; 222: 311
  • 30 Dyson HJ, Wright PE. Annu. Rev. Biophys. Chem. 1991; 20: 519
  • 31 Cicero DO, Barbato G, Bazzo R. J. Am. Chem. Soc. 1995; 117: 1027
  • 32 Koivisto JJ, Kumpulainen ET. T, Koskinen AM. P. Org. Biomol. Chem. 2010; 8: 2103
  • 33 Andersson H, Demaegdt H, Vauquelin G, Lindeberg G, Karlen A, Hallberg M, Erdelyi M, Hallberg A. J. Med. Chem. 2010; 53: 8059
  • 34 Erdelyi M, Pfeiffer B, Hauenstein K, Fohrer J, Gertsch J, Altmann KH, Carlomagno T. J. Med. Chem. 2008; 51: 1469
  • 35 Friden-Saxin M, Seifert T, Hansen LK, Grotli M, Erdelyi M, Luthman K. Tetrahedron 2012; 68: 7035
  • 36 Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. J. Phys. Chem. B 2001; 105: 6474
  • 37 Mohamadi F, Richards NG. J, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC. J. Comp. Chem. 1990; 11: 440
  • 38 Kessler H, Griesinger C, Lautz J, Müller A, Vangunsteren WF, Berendsen HJ. C. J. Am. Chem. Soc. 1988; 110: 3393
  • 39 Schmidt JM. J. Magn. Res. 2007; 186: 34
  • 40 Atasoylu O, Furst G, Risatti C, Smith AB. III. Org. Lett. 2010; 12: 1788
  • 41 Honda S, Kobayashi N, Munekata E. J. Mol. Biol. 2000; 295: 269
  • 42 Honda S, Kobayashi N, Munekata E, Uedaira H. Biochemistry 1999; 38: 1203