Synlett 2014; 25(1): 138-142
DOI: 10.1055/s-0033-1340154
letter
© Georg Thieme Verlag Stuttgart · New York

Cross-Metathesis Approach for Stereocontrolled Synthesis of the C1–C15 Fragment of Rhizopodin

Honggang Gui
a   Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, 518055, P. R. of China
,
Junyang Liu
a   Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, 518055, P. R. of China
b   Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. of China   Fax: +852(2)2641912   Email: tao.ye@polyu.edu.hk   Email: xuzs@pkusz.edu.cn
,
Liankai Song
a   Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, 518055, P. R. of China
,
Chunngai Hui
b   Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. of China   Fax: +852(2)2641912   Email: tao.ye@polyu.edu.hk   Email: xuzs@pkusz.edu.cn
,
Junmin Feng
a   Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, 518055, P. R. of China
,
Zhengshuang Xu*
a   Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, University Town of Shenzhen, Xili, Nanshan District, Shenzhen, 518055, P. R. of China
,
Tao Ye*
b   Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. of China   Fax: +852(2)2641912   Email: tao.ye@polyu.edu.hk   Email: xuzs@pkusz.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 18 August 2013

Accepted after revision: 22 September 2013

Publication Date:
05 November 2013 (online)


Abstract

The C1–C15 fragment of rhizopodin was synthesized through either Suzuki coupling reaction of vinyl iodide and vinyl boronate or cross-metathesis of a terminal olefin and a diene adduct in the presence of Hoveyda–Grubbs II catalyst.

Supporting Information

 
  • References and Notes

  • 1 Sasse F, Steinmetz H, Höfle G, Reichenbach H. J. Antibiot. 1993; 46: 741
    • 2a Jansen R, Steinmetz H, Sasse F, Schubert WD, Hagelüken G, Albrecht SC, Müller R. Tetrahedron Lett. 2008; 49: 5796
    • 2b Horstmann N, Menche D. Chem. Commun. 2008; 41: 5173
  • 3 Hagelueken G, Albrecht SC, Steinmetz H, Jansen R, Heinz DW, Kalesse M, Schubert WD. Angew. Chem. Int. Ed. 2009; 48: 595
    • 4a Liu H, Liu Y, Wang Z, Xing X, Maguire AR, Luesch H, Zhang H, Xu Z, Ye T. Chem. Eur. J. 2013; 19: 6774
    • 4b Boyaud F, Mahiout Z, Lenoir C, Tang S, Wdzieczak-Bakala J, Witczak A, Bonnard I, Banaigs B, Ye T, Inguimbert N. Org. Lett. 2013; 15: 3898
    • 4c Long B, Tang S, Chen L, Qu S, Chen B, Liu JY, Maguire AR, Wang Z, Liu Y, Zhang H, Xu ZS, Ye T. Chem. Commun. 2013; 49: 2977
    • 4d Dai L, Chen B, Lei H, Wang Z, Liu Y, Xu Z, Ye T. Chem. Commun. 2012; 48: 8697
    • 4e Liu J, Ma X, Liu Y, Wang Z, Kwong S, Ren Q, Tang S, Meng Y, Xu Z, Ye T. Synlett 2012; 783
    • 4f Wang L, Xu Z, Ye T. Org. Lett. 2011; 13: 2506
    • 4g Liu H, Liu YQ, Xu ZS, Ye T. Chem. Commun. 2010; 46: 7486
    • 4h Gao XG, Liu YQ, Kwong SQ, Xu ZX, Ye T. Org. Lett. 2010; 12: 3018
    • 4i Li S, Chen Z, Xu ZS, Ye T. Chem. Commun. 2010; 46: 4773
    • 4j Chen Z, Song L, Xu ZS, Ye T. Org. Lett. 2010; 12: 2036
    • 4k Jin Y, Liu YQ, Wang Z, Kwong S, Xu ZS, Ye T. Org. Lett. 2010; 12: 1100
    • 4l Liang S, Xu ZS, Ye T. Chem. Commun. 2010; 46: 153
    • 4m Chen B, Dai L, Zhang H, Tan W, Xu ZS, Ye T. Chem. Commun. 2010; 46: 574
    • 4n Li S, Liang S, Tan WF, Xu ZS, Ye T. Tetrahedron 2009; 65: 2695
    • 4o Li S, Liang S, Xu ZS, Ye T. Synlett 2008; 569
    • 4p Ren Q, Dai L, Zhang H, Tan W, Xu ZS, Ye T. Synlett 2008; 2379
    • 4q Chen ZY, Ye T. New J. Chem. 2006; 30: 518
    • 4r Pang HW, Xu ZS, Chen ZY, Ye T. Lett. Org. Chem. 2005; 2: 699
    • 4s Pang HW, Xu ZS, Ye T. Lett. Org. Chem. 2005; 2: 703
    • 4t Chen HL, Xu ZS, Ye T. Tetrahedron 2005; 61: 11132
    • 4u Peng YG, Pang HW, Ye T. Org. Lett. 2004; 6: 3781
    • 4v Chen ZY, Deng JG, Ye T. ARKIVOC 2003; (vii): 268
    • 4w Xu ZS, Peng YG, Ye T. Org. Lett. 2003; 5: 2821
    • 5a Cheng Z, Song L, Xu Z, Ye T. Org. Lett. 2010; 12: 2036
    • 5b Chakraborty TK, Pulukuri KK, Sreekanth M. Tetrahedron Lett. 2010; 51: 6444
    • 5c Chakraborty TK, Sreekanth M, Pulukuri KK. Tetrahedron Lett. 2011; 52: 59
    • 5d Chakraborty TK, Pulukuri KK. Org. Lett. 2012; 14: 2858
    • 5e Nicolaou KC, Jiang X, Lindsay-Scott PJ, Corbu A, Yamashiro S, Bacconi A, Fowler VM. Angew. Chem. Int. Ed. 2011; 50: 1139
    • 5f Kretschmer M, Menche D. Org. Lett. 2012; 14: 382
    • 5g Dieckmann M, Kretschmer M, Li P, Rudolph S, Herkommer D, Menche D. Angew. Chem. Int. Ed. 2012; 51: 5667
    • 5h Dieckmann M, Rudolph S, Dreisigacker S, Menche D. J. Org. Chem. 2013; 77: 10782
    • 5i Dieckmann M, Menche D. Org. Lett. 2013; 15: 228
    • 5j Dalby SM, Goodwin-Tindall J, Paterson I. Angew. Chem. Int. Ed. 2013; 52: 6517

      For the construction of 1,3-dienes through cross-metathesis, see:
    • 6a Funk TW, Efskind J, Grubbs RH. Org. Lett. 2007; 7: 187
    • 6b Moura-Letts G, Curran DP. Org. Lett. 2007; 9: 5
    • 6c Basu K, Eppich JC, Paquette LA. Adv. Synth. Catal. 2002; 344: 615
    • 6d Basu S, Waldmann H. J. Org. Chem. 2006; 71: 3977
    • 6e Lacombe F, Radkowski K, Seidel G, Fürstner A. Tetrahedron 2004; 60: 7315

    • For applications in total synthesis of natural macrolides through ene-diene cyclizations, see:
    • 6f Gallenkamp D, Fürstner A. J. Am. Chem. Soc. 2011; 133: 9232
    • 6g Moulin E, Nevado C, Gagnepain J, Kelter G, Fiebig HH, Fürstner A. Tetrahedron 2010; 66: 6421
    • 6h Sun L, Feng G, Guan Y, Liu Y, Wu J, Dai WM. Synlett 2009; 2361
    • 6i Fürstner A, Nevado C, Tremblay M, Chevrier C, Teplý F, Aïssa C, Waser M. Angew. Chem. Int. Ed. 2006; 45: 5837
    • 6j Barluenga S, Lopez P, Mpolin E, Winssinger N. Angew. Chem. Int. Ed. 2004; 43: 3467
    • 6k Wang X, Porco JA. Jr. J. Am. Chem. Soc. 2003; 125: 6040
    • 6l Sedrani R, Martin Cabrejas LM, Papageorgiou CD, Senia F, Rohrbach S, Wagner D, Thai B, Eme A.-MJ, France J, Oberer L, Rihs G, Zenke G, Wagner J. J. Am. Chem. Soc. 2003; 125: 3849
    • 6m Yang Z.-Q, Danishefsky SJ. J. Am. Chem. Soc. 2003; 125: 9602
    • 6n Yamamoto K, Garbaccio RM, Stachel SJ, Solit DB, Chiosis G, Rosen N, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 1280
    • 6o Bach T, Lemarchand A. Synlett 2002; 1302
    • 6p Paquette L, Basu K, Eppich JC, Hofferberth JE. Helv. Chim. Acta 2002; 85: 3033
    • 6q Biswas K, Lin H, Njardarson JT, Chappell MD, Chou T.-C, Guan Y, Tong WP, He L, Horwitz SB, Danishefsky SJ. J. Am. Chem. Soc. 2002; 124: 9825
    • 6r Garbaccio R, Stachel SJ, Baeschlin DK, Danishefsky SJ. J. Am. Chem. Soc. 2001; 123: 10903
    • 6s Dvorak CA, Schmitz WD, Poon DJ, Pryde DC, Lawson JP, Amos RA, Meyers AI. Angew. Chem. Int. Ed. 2000; 39: 1664
    • 6t Wagner J, Martin Cabrejas LM, Grossmith CE, Papageorgiou C, Senia F, Wagner D, France J, Nolan SP. J. Org. Chem. 2000; 65: 9255
    • 6u Martin Cabrejas LM, Rohrbach S, Wagner D, Kallen J, Zenke G, Wagner J. Angew. Chem. Int. Ed. 1999; 38: 2443
  • 7 Hermitage SA, Cardwell KS, Chapman T, Cooke JW. B, Newton R. Org. Process Res. Dev. 2001; 5: 37
  • 8 Panek JS, Beresis RT. J. Org. Chem. 1996; 61: 6496
    • 10a Keck GE, Tarbet KH, Geraci LS. J. Am. Chem. Soc. 1993; 115: 8467
    • 10b Keck GE, Krishnamurthy D, Grier MC. J. Org. Chem. 1993; 58: 6543
  • 11 Dale JA, Mosher HS. J. Am. Chem. Soc. 1973; 95: 512
    • 12a Ohtani I, Kusumi T, Kashman Y, Kakisawa H. J. Am. Chem. Soc. 1991; 113: 4092
    • 12b Mosher HS. J. Org. Chem. 1973; 38: 2143
  • 13 Morrill C, Grubbs RH. J. Org. Chem. 2003; 68: 6031
  • 14 Paterson I, Findlay AD, Noti C. Chem. Commun. 2008; 6408
    • 15a Brown HC, Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
    • 15b Brown HC, Bhat KS. J. Am. Chem. Soc. 1986; 108: 5919
    • 15c Racherla US, Brown HC. J. Org. Chem. 1991; 56: 401
  • 16 Sharpless KB, Martin VS, Katsuki T, Carlsen PH. J. J. Org. Chem. 1981; 46: 3936
  • 17 Hashimoto N, Aoyama T, Shioiri T. Chem. Pharm. Bull. 1981; 29: 1475
  • 18 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 19 Okazoe T, Takai K, Utimoto K. J. Am. Chem. Soc. 1987; 109: 951
  • 20 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457 ; and references cited therein
  • 21 Procedures for the synthesis of diene 1: Suzuki Cross-Coupling; General Procedure: Vinyl iodide 5 (1.0 equiv), pinacol boronate 4 (1.2 equiv), base (2.0 equiv) and ligand (0.5 equiv) were dissolved in degassed THF (2.0 mL) and palladium catalyst (0.1 equiv) dissolved in degassed THF (1.0 mL) was added by using a cannula. The reaction mixture was stirred at ambient temperature and monitored by TLC. Upon completion of the reaction, it was quenched by addition of sat. aq NH4Cl (10 mL) and filtered through a pad of Celite, eluted with CH2Cl2 (10 mL). The filtrate was concentrated to remove volatiles and the aqueous residue was extracted with CH2Cl2 (3 × 30 mL). The combined organic layers were dried over Na2SO4 and concentrated under vacuum. The residue was purified by flash column chromatography (EtOAc–hexane, 1:4; Rf = 0.4) to give diene 1 as a colorless oil.Cross-Metathesis; General Procedure: To a solution of alkene 2 (3.0 equiv) and 1,3-diene 3 (1.0 equiv) in degassed solvent (1.5 mL), ruthenium catalyst (0.1 equiv; pre-dissolved in 1.0 mL degassed solvent) was added by using a cannula, and the reaction mixture was stirred at different temperatures and monitored by TLC. When the reaction reached completion, volatiles were removed under vacuum, and compound 1 was obtained after purification by flash column chromatography (EtOAc–hexane, 1:4; Rf = 0.4) as a colorless oil. The analytical data of the product were identical those of the main product of the Suzuki coupling reaction.Analytical Data of 1: [α]D 25 +8.4 (c 1.1, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 7.54 (s, 1 H), 6.24–5.97 (m, 2 H), 5.77–5.56 (m, 1 H), 5.50–5.31 (m, 1 H), 4.75 (s, 2 H), 4.33–4.14 (m, 2 H), 3.70–3.67 (m, 1 H), 3.66 (s, 3 H), 3.32 (s, 3 H), 3.21 (s, 3 H), 2.72–2.59 (m, 2 H), 2.58–2.45 (m, 2 H), 1.85 (ddd, J = 13.3, 7.9, 5.2 Hz, 1 H), 1.66–1.57 (m, 1 H), 0.91 (s, 9 H), 0.87 (d, J = 8.7 Hz, 9 H), 0.10 (s, 6 H), 0.05 (s, 3 H), 0.03 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 172.19, 162.85, 140.52, 136.03, 132.70, 131.98, 131.81, 129.99, 78.71, 76.08, 66.78, 58.42, 56.86, 55.96, 51.40, 43.40, 42.42, 37.79, 25.76, 18.37, 17.93, –4.49, –4.80, –5.39. HRMS (ESI): m/z [M + Na]+ calcd for C30H55NO7Si2Na+: 620.3410; found: 620.3406.