Synlett 2014; 25(09): 1241-1245
DOI: 10.1055/s-0033-1341200
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylation of Aryl Bromides with N-Substituted Cyanamides

Zhong Lian
a   Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
,
Stig D. Friis
a   Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
,
Anders T. Lindhardt*
b   Department of Engineering, Aarhus University, Finlandsgade 22, 8200 Aarhus N, Denmark   Fax: +4541893001   Email: lindhardt@eng.au.dk   Email: ts@chem.au.dk
,
Troels Skrydstrup*
a   Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
› Author Affiliations
Further Information

Publication History

Received: 20 February 2014

Accepted after revision: 19 March 2014

Publication Date:
11 April 2014 (online)


Abstract

The palladium(0)-catalyzed three-component coupling reaction of aryl bromides, carbon monoxide, and N-alkyl cyan­amides has been developed employing a two-chamber system with ex situ generation of carbon monoxide from a silacarboxylic acid. The reactions proceeded well and were complete with a reaction time of only five hours leading to the corresponding N-alkyl cyanamides in good yields. The methodology was further extended to 13C isotope labeling of the carbonyl group through the use of a 13CO produced from the corresponding 13C-labeled version of the sila­carboxylic acid.

Supporting Information

 
  • References and Notes

  • 1 Larraufie M.-H, Maestri G, Malacria M, Ollivier C, Fensterbank L, Lacôte E. Synthesis 2012; 44: 1279
    • 2a Nekrasov DD. Russ. J. Org. Chem. 2004; 40: 1387
    • 2b Nekrasov DD. Chem. Heterocycl. Compd. 2004; 40: 1107
    • 2c Maestri G, Larraufie MH, Ollivier C, Malacria M, Fensterbank L, Lacôte E. Org. Lett. 2012; 14: 5538
    • 2d Larraufie M.-H, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J. Am. Chem. Soc. 2010; 132: 4381
    • 2e Hu Z, Li S.-d, Hong P.-Z. ARKICOV 2010; (ix): 171
    • 3a Guay D, Beaulieu C, Percival MD. Curr. Top. Med. Chem. 2010; 10: 708
    • 3b Shirota FN, Stevens JM, DeMaster EG, Nagasawa HT. J. Med. Chem. 1997; 40: 1870
    • 3c Kwon C.-H, Nagasawa HT, De Master EG, Shirota NF. J. Med. Chem. 1986; 29: 1922
    • 3d Ronn R, Gossas T, Sabnis YA, Daoud H, Akerblom E, Danielson UH, Sandstrom A. Bioorg. Med. Chem. 2007; 15: 4057
    • 3e Larraufie M.-H, Maestri G, Malacria M, Ollivier C, Fensterbank L, Lacôte E. Synthesis 2012; 44: 1279
    • 4a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 4b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 5a Ahmed MS. M, Mori A. Org. Lett. 2003; 5: 3057
    • 5b Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem. 1998; 63: 4726
    • 6a Albaneze J, Bazaral C, Leavey T, Dormer PG, Murry JA. Org. Lett. 2004; 6: 2097
    • 6b Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
    • 6c Hu Y, Liu J, Lu Z, Luo X, Zhang H, Lan Y, Lei A. J. Am. Chem. Soc. 2010; 132: 3153
    • 6d Lapidus AL, Eliseev OL, Bondarenko TN, Sizan OE, Ostapenko AG, Beletskaya IP. Synthesis 2002; 317
    • 7a Kumar K, Zapf A, Michalik D, Tillack A, Heinrich T, Arlt M, Beller M. Org. Lett. 2004; 6: 7
    • 7b Liang D, Hu Z, Peng J, Huang J, Zhu Q. Chem. Commun. 2013; 173
    • 7c Xie P, Xia C, Huang H. Org. Lett. 2013; 15: 3370
    • 7d Fang W, Deng Q, Xu M, Tu T. Org. Lett. 2013; 15: 3678
    • 7e Iizuka M, Kondo Y. Chem. Commun. 2006; 16: 1739
    • 7f Nielsen DU, Taaning R, Lindhardt A, Gøgsig TM, Skrydstrup T. Org. Lett. 2011; 13: 4454
  • 8 Klaus S, Neumann H, Zapf A, Almena J, Riermeier T, Groâ P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
  • 9 Pri-Bar I, Alper H. J. Org. Chem. 1989; 54: 36
  • 10 Quesnel JS, Arndtsen BA. J. Am. Chem. Soc. 2013; 135: 16841

    • For recent carbonylative reaction review, see:
    • 11a Wu XF, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 11b Wu XF, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 11c Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 11d Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
    • 11e Brennfuhrer AH, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
  • 12 Stolley RM, Guo W.-X, Louie J. Org. Lett. 2012; 14: 322
  • 13 Mane RS, Nordeman P, Odell LR, Larhed M. Tetrahedron Lett. 2013; 54: 6912
    • 14a Hermange P, Lindhardt A, Taaning R, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
    • 14b Hermange P, Gøgsig T, Lindhardt A, Taaning R, Skrydstrup T. Org. Lett. 2011; 13: 2444
    • 14c Xin Z, Gøgsig T, Lindhardt A, Skrydstrup T. Org. Lett. 2012; 14: 284
    • 14d Nielsen DU, Neumann K, Taaning R, Lindhardt A, Modvig A, Skrydstrup T. J. Org. Chem. 2012; 77: 6155
    • 14e Bjerglund K, Lindhardt A, Skrydstrup T. J. Org. Chem. 2012; 77: 3793
    • 14f Burhardt M, Taaning R, Skrydstrup T. Org. Lett. 2013; 15: 948
    • 15a Friis S, Taaning R, Lindhardt A, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 18114
    • 15b Friis S, Andersen TL, Skrydstrup T. Org. Lett. 2013; 15: 1378
  • 16 General Procedure for the Synthesis of N-Benzyl-N-cyano-2-naphthamide (3a) In an argon-filled glovebox to chamber 1 of the two-chamber system was added 2-bromonaphthalene (42 mg, 0.20 mmol), [Pd(cinnamyl)Cl]2 (5.0 mg, 0.01 mmol), CataCXium A (8.0 mg, 0.02 mmol), K3PO4 (65 mg, 0.3 mmol), and butyronitrile (1.0 mL) in that order. The chamber was closed with a screwcap fitted with a Teflon seal. To chamber 2 of the two-chamber system was added methyldiphenylsila-carboxylic acid (122 mg, 0.50 mmol) and KF (30 mg, 0.50 mmol). The chamber was closed with a screwcap fitted with a Teflon seal. The loaded two-chamber system was removed from the glovebox and heated to 30 °C for 15 min. Then N-benzyl cyanamide (31 mg, 0.24 mmol) in butyronitrile (1.0 mL) was added to chamber 1. Lastly butyronitrile (2.0 mL) was added to chamber 2. This reaction was stirred at 90 °C for 5 h and was then cooled to r.t. The solids were filtrated off, and the reaction was concentrated under vacuum. The crude residue was subjected to flash chromatography using pentane–EtOAc (10:1) as eluent. This resulted in 46 mg (81%) of 3a as white solid. 1H NMR (400 MHz, CDCl3): δ = 8.43 (s, 1 H), 7.94–7.98 (m, 2 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.85 (d, J = 8.4 Hz, 1 H), 7.44–7.84 (m, 7 H), 4.98 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 168.1, 135.3, 133.8, 131.9, 130.0, 129.2, 129.1 (2 C), 129.0 (2 C), 128.8, 128.7, 128.6, 127.9, 127.8, 127.2, 124.3, 111.1, 51.4. HRMS: m/z calcd for C19H15N2O [M + H]+: 287.1184; found: 287.1178. 13C-Labeled N-Benzyl-N-cyano-2-naphthamide (13C-3a) According to the general procedure. Flash chromatography using pentane–EtOAc (10:1) as eluent resulted in 46 mg (80% yield) as a white solid. 1H NMR (400 MHz, CDCl3): δ = 8.40 (d, J = 4.4 Hz, 1 H), 7.81–7.96 (m, 4 H), 7.41–7.64 (m, 7 H), 4.96 (d, J = 2.8 Hz, 2 H). 13C NMR (0100 MHz, CDCl3): δ = 168.1 (13C-enriched), 135.4, 133.9, 132.0 (d, J = 5.1 Hz), 130.1 (d, J = 2.2 Hz), 129.3 (2 C), 129.1 (d, J = 2.9 Hz, 2 C), 128.8, 128.7, 128.6, 128.4, 127.9, 127.7, 127.3, 124.3 (d, J = 2.2 Hz), 111.1 (d, J = 3.6 Hz), 51.5. HRMS: m/z calcd for C18 13CH15N2O [M + H]+: 288.1218; found: 288.1213.