Synlett 2014; 25(10): 1395-1402
DOI: 10.1055/s-0033-1341242
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Double Activation and Arylation of 2° and 3° C(sp3)–H Bonds of the Norbornane System: Formation of a C–C Bond at the Bridgehead Carbon and Bridgehead Quaternary Stereocenter

Ramarao Parella
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
,
Srinivasarao Arulananda Babu*
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India   Fax: +91(172)2240266   Email: sababu@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 19 February 2014

Accepted after revision: 25 March 2014

Publication Date:
29 April 2014 (online)


Abstract

Pd-catalyzed activation and direct arylation of both 2° and the bridgehead 3° (sp3) C–H bonds and an unprecedented C–C bond formation at the bridgehead carbon of the norbornane system are reported. The assembly of bridgehead-substituted norbornane frameworks having contiguous stereocenters was accomplished. X-ray crystal structure analysis of representative molecules unambiguously established the stereochemistry.

Supporting Information

 
  • References and Notes

    • 1a Carey FA, Sundberg RJ. Advanced Organic Chemistry . 5th ed., Vols. 1 and 2 Springer; New York: 2007
    • 1b Warrener RN. Eur. J. Org. Chem. 2000; 3363
    • 1c Bear BR, Sparks SM, Shea KJ. Angew. Chem. Int. Ed. 2001; 40: 820
    • 1d Jiang Y, Chen C.-F. Eur. J. Org. Chem. 2011; 6377
    • 1e Fringuelli F, Taticchi A. The Diels–Alder Reaction: Selected Practical Methods . Wiley; New York: 2002
    • 1f Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 1g Liao C.-C, Peddinti RK. Acc. Chem. Res. 2002; 35: 856
    • 1h Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
    • 1i Simpkins NS. Chem. Commun. 2013; 49: 1042
    • 1j Hayes CJ, Simpkins NS, Kirk DT, Mitchell L, Baudoux J, Blake AJ, Wilson C. J. Am. Chem. Soc. 2009; 131: 8196
    • 1k Csende F, Fulop F, Stajer G. Curr. Org. Synth. 2008; 5: 173
    • 1l Butkus E. Synlett 2001; 1827
    • 1m Wang Z. Synlett 2012; 2311
    • 1n Njardarson JT. Tetrahedron 2011; 23: 7631
    • 1o Brown HC. Acc. Chem. Res. 1973; 6: 377
    • 1p Presset M, Coquerel Y, Rodriguez J. Chem. Rev. 2013; 113: 525
    • 1q Ruiz M, López-Alvarado P, Giorgi G, Menéndez JC. Chem. Soc. Rev. 2011; 40: 3445
    • 2a Kraus GA, Hon Y.-S, Thomas PJ, Laramay S, Liras S, Hanson J. Chem. Rev. 1989; 89: 1591
    • 2b Paquette LA. Chem. Soc. Rev. 1995; 24: 9
    • 2c Harmata M, Wacharasindhu S. Synthesis 2007; 23
    • 2d Wendeborn S, Nussbaumer H, Schaetzer J, Winkler T. Synlett 2010; 1966
    • 2e Grimme W, Bertsch A, Flock H, Noack T, Krauthäuser S. Synlett 1998; 1175
    • 2f Slowinski F, Ayad OB, Vache J, Saady M, Leclerc O, Lochead A. Org. Lett. 2010; 12: 5004
    • 2g Aubé J, Szostak M. Chem. Rev. 2013; 113: 5701
    • 2h Coombs TC, Zhang Y, Garnier-Amblard EC, Liebeskind LS. J. Am. Chem. Soc. 2009; 131: 876
    • 2i Takeuchi K, Ohga Y. Bull. Chem. Soc. Jpn. 1996; 69: 833
    • 2j Wiberg KB, Lowry BR. J. Am. Chem. Soc. 1963; 85: 3188
    • 2k Bartlett PD, Knox LH. J. Am. Chem. Soc. 1939; 61: 3184
    • 2l Yates P, Kaldas M. Can. J. Chem. 1992; 70: 1492
    • 2m Gohlke RS. J. Am. Chem. Soc. 1968; 90: 2714

      For selected articles, see:
    • 3a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
    • 3b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965

    • For selected review articles, see:
    • 3c Kakiuchi F, Murai S. Acc. Chem. Res. 2002; 35: 826
    • 3d Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 3e Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 3f Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
    • 3g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3h Wu Y, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26
    • 3i Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
    • 3j Zhong Y, Loh K. Chem. Asian J. 2010; 5: 1532
    • 3k Ren Z, Mo F, Dong G. J. Am. Chem. Soc. 2012; 134: 16991

      For selected reviews, see:
    • 4a Li H, Li B.-J, Shi Z.-J. Catal. Sci. Technol. 2011; 1: 191
    • 4b Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O. Chem. Eur. J. 2010; 16: 2654
    • 4c Godula K, Sames D. Science 2006; 312: 67

    • For selected articles, see:
    • 4d Ackermann L, Vicente R, Born R. Adv. Synth. Catal. 2008; 350: 741
    • 4e Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
    • 4f Ye X, He Z, Ahmed T, Weise K, Akhmedov NG, Petersen JL, Shi X. Chem. Sci. 2013; 4: 3712
    • 4g White CM. Science 2012; 335: 807
    • 4h Gutekunst WR, Baran PS. Angew. Chem. Int. Ed. 2012; 51: 7507
    • 4i Roman DS, Charette AB. Org. Lett. 2013; 15: 4394
    • 4j Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
    • 4k Parella R, Gopalakrishnan B, Babu SA. J. Org. Chem. 2013; 78: 11911
    • 4l Parella R, Gopalakrishnan B, Babu SA. Org. Lett. 2013; 15: 3238
    • 4m Santos AD, El Kaïm L, Grimaud L, Ramozzi R. Synlett 2012; 438
    • 4n Odani R, Nishino M, Hirano K, Satoh T, Miura M. Heterocycles 2014; 88: 595
    • 4o Christakakou M, Schön M, Schnürch M, Mihovilovic MD. Synlett 2013; 24: 2411
    • 4p Rao Y. Synlett 2013; 24: 2472
    • 5a He G, Chen G. Angew. Chem. Int. Ed. 2011; 50: 5192
    • 5b Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 5c Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2013; 16: 480

      For examples on Pd-catalyzed 3° C(sp3)–H activation, see:
    • 6a Hoshiya N, Kobayashi T, Arisawa M, Shuto S. Org. Lett. 2013; 15: 6202
    • 6b Cao X, Yang W, Liu C, Wei F, Wu K, Sun W, Song J, Xie L, Huang W. Org. Lett. 2013; 15: 3102
    • 6c Saget T, Perez D, Cramer N. Org. Lett. 2013; 15: 1354
    • 6d Rousseaux S, Liégault B, Fagnou K. Chem. Sci. 2012; 3: 244
    • 6e Ladd CL, Roman DS, Charette AB. Org. Lett. 2013; 15: 1350

      For a paper dealing with norbornene-type systems with the palladium catalyst, see:
    • 7a Malacria M, Maestri G. J. Org. Chem. 2013; 78: 1323
    • 7b The stereochemistry was assigned based on X-ray crystal structures of 4a, 3d, 5d, and 7b and the similarity in the NMR spectral pattern.
  • 8 General procedure for the direct C–H arylation of norbornane systems and the preparation of 3a–h, 5a–g, and 7a–h: A solution of bridged bicyclic framework 1a, 1i or 4 (0.25 mmol), Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol%), aryl iodide (1 mmol), and Ag2CO3 (68.9 mg, 0.25 mmol) in anhydrous t-BuOH (3 mL) was heated at an appropriate temperature and for an appropriate time (73–85 °C, 24–36 h; see the respective tables or schemes for specific examples) under a nitrogen atmosphere. After the reaction period, the reaction mixture was diluted with EtOAc and concentrated in vacuum. Purification of the resulting reaction mixture by column chromatography (silica gel, 100−200 mesh) furnished the corresponding bisarylated bicyclo[2.2.1]heptane-2-carboxamides.
  • 9 Analytical data of 3a: Following the general procedure described above, 3a was obtained after purification by column chromatography on silica gel (EtOAc–hexanes, 30:70). Yield: 70% (78 mg); brown solid; mp 172–174 °C (MeOH–hexanes, 1:1). FTIR (KBr): 3401, 1629, 1521, 1322, 667 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.27 (br s, 1 H), 8.63 (dd, J = 7.2, 1.6 Hz, 1 H), 8.57 (dd, J = 4.2, 1.6 Hz, 1 H), 8.07 (dd, J = 8.2, 1.6 Hz, 1 H), 7.47–7.34 (m, 5 H), 7.18 (d, J = 8.0 Hz, 2 H), 7.09 (d, J = 8.0 Hz, 2 H), 7.01 (d, J = 8.0 Hz, 2 H), 3.88 (dd, J = 11.0, 2.8 Hz, 1 H), 3.57 (dd, J = 11.0, 1.3 Hz, 1 H), 2.90–2.85 (m, 1 H), 2.80 (br s, 1 H), 2.32 (s, 3 H), 2.30–2.26 (m, 2 H), 2.23 (s, 3 H), 1.93 (dd, J = 9.5, 1.6 Hz, 1 H), 1.83–1.77 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 170.3, 147.6, 141.2, 138.2, 137.6, 136.0, 135.7, 134.9, 134.6, 129.0, 128.6, 128.2, 127.7, 127.3, 127.1, 121.3, 120.9, 116.2, 58.0, 56.2, 49.2, 46.5, 41.6, 29.6, 23.9, 21.1, 21.0. HRMS (ESI): m/z [M + H]+ calcd for C31H31N2O: 447.2436; found: 447.2444.
  • 10 Analytical data of 3b: Following the general procedure described above, 3b was obtained after purification by column chromatography on silica gel (EtOAc–hexanes, 30:70). Yield: 81% (84 mg); white solid; mp 135–137 °C (MeOH–hexanes, 1:1). FTIR (KBr): 3300, 1668, 1587, 1321, 1021 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.30 (br s, 1 H), 8.63 (dd, J = 7.2, 1.9 Hz, 1 H), 8.56–8.55 (m, 1 H), 8.06 (dd, J = 8.3, 1.8 Hz, 1 H), 7.52–7.49 (m, 1 H), 7.46–7.07 (m, 12 H), 3.92 (dd, J = 13.6, 1.4 Hz, 1 H), 3.63 (dd, J = 13.6, 1.4 Hz, 1 H), 2.92–2.86 (m, 2 H), 2.36–2.31 (m, 2 H), 1.96 (dd, J = 9.4, 1.6 Hz, 1 H), 1.86–1.78 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 170.0, 147.7, 144.1, 140.7, 138.2, 136.0, 134.5, 128.3, 128.1, 127.8, 127.7, 127.3, 127.2, 126.3, 125.6, 121.3, 120.9, 116.1, 58.0, 56.5, 49.5, 46.4, 41.4, 29.6, 23.8. HRMS (ESI): m/z [M + H]+ calcd for C29H27N2O: 419.2123; found: 419.2123.
  • 11 The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre: CCDC-982495 (4a), CCDC-982494 (3d), CCDC-982496 (5d), and CCDC-982497 (7b). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.