Klinische Neurophysiologie 2013; 44(02): 145-153
DOI: 10.1055/s-0033-1345202
Originalia
© Georg Thieme Verlag KG Stuttgart · New York

Bildgebende Verfahren bei amyotropher Lateralsklerose und frontotemporaler Demenz

Imaging Procedures for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
T. Prell
1   Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, Jena
,
J. Grosskreutz
1   Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, Jena
› Author Affiliations
Further Information

Publication History

Publication Date:
20 June 2013 (online)

Zusammenfassung

Aufgrund genetischer und neuropathologischer Befunde kann man die amyotrophe Lateralsklerose (ALS) und Frontotemporale Demenz (FTD) als 2 Entitäten eines Krankheitskontinuums betrachten. Moderne bildgebende Verfahren unterstützen diese Ansicht, indem sie ähnlich gelagerte strukturelle und funktionelle Veränderungen der grauen und weißen Substanz bei beiden Erkrankungen nachweisen. Für die ALS ist entscheidend, dass ihre Pathologie deutlich über die motorischen Areale hinausgeht und die Schädigung der weißen Substanz ein wichtiger Bestandteil der Pathophysiologie ist, wobei zeitgleich hyper- und hypokonnektive Areale existieren. Im Umkehrschluss bestätigen die Imaging-Verfahren, dass die FTD nicht allein durch die frontale Atrophie bestimmt wird, sondern auch motorische Areale einbezogen sind und durch die vermutlich kompensatorische Rekrutierung von verschiedenen Hirnarealen gekennzeichnet ist. Diese Übersichtsarbeit stellt die wesentlichen Ergebnisse zur konventionellen MRT und moderner Bildgebung bei ALS und FTD dar: Voxel-Basierte-Morphometrie, Diffusions-Tensor-Imaging, Magnetization-Transfer-Imaging, MR-Spektroskopie, funktionelles MRT.

Abstract

On the basis of recent genetic and neuropathological findings, amyotrophic lateral sclerosis and frontotemporal dementia can be regarded as 2 manifestations of a continuous disease. Novel imaging techniques showing comparable structural and functional changes in patient’s white and grey matter support this view. Pathological changes in ALS clearly extend beyond the motor areas and disturbances in white matter, characterised by functional hypo- and hyperconnective areas, are a crucial factor in this disease. Vice versa FTD is not restricted to frontal atrophy, but shows involvement of motor areas and recruitment of compensatory brain regions. This review focus on the main results, obtained from conventional imaging and modern MRI techniques in ALS and FTD such as voxel-based morphometry, diffusion tensor imaging, magnetisation transfer imaging, MR spectroscopy, and functional MRI.

 
  • Literatur

  • 1 Chio A, Calvo A, Moglia C et al. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. J Neurol Neurosurg Psychiatry 2011; 82: 740-746
  • 2 Morris HR, Waite AJ, Williams NM et al. Recent advances in the genetics of the ALS-FTLD complex. Curr Neurol Neurosci Rep 2012; 12: 243-250
  • 3 Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257-268
  • 4 Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol 2010; 9: 995-1007
  • 5 Ferrari R, Kapogiannis D, Huey ED et al. FTD and ALS: a tale of two diseases. Curr Alzheimer Res 2011; 8: 273-294
  • 6 Tsermentseli S, Leigh PN, Goldstein LH. The anatomy of cognitive impairment in amyotrophic lateral sclerosis: more than frontal lobe dysfunction. Cortex 2012; 48: 166-182
  • 7 Fecto F, Siddique T. Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci 2011; 45: 663-675
  • 8 Achi EY, Rudnicki SA. ALS and Frontotemporal Dysfunction: A Review. Neurol Res Int 2012; 2012: 806306
  • 9 de Carvalho M, Dengler R, Eisen A et al. The Awaji criteria for diagnosis of ALS. Muscle Nerve 2011; 44: 456-457
  • 10 Hsiung GY, DeJesus-Hernandez M, Feldman HH et al. Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 2012; 135: 709-722
  • 11 Simon-Sanchez J, Dopper EG, Cohn-Hokke PE et al. The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 2012; 135: 723-735
  • 12 Boeve BF, Boylan KB, Graff-Radford NR et al. Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 2012; 135: 765-783
  • 13 Snowden JS, Rollinson S, Thompson JC et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012; 135: 693-708
  • 14 Abe K, Fujimura H, Kobayashi Y et al. Degeneration of the pyramidal tracts in patients with amyotrophic lateral sclerosis. A premortem and postmortem magnetic resonance imaging study. J Neuroimaging 1997; 7: 208-212
  • 15 Hecht MJ, Fellner F, Fellner C et al. MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images. J Neurol Sci 2001; 186: 37-44
  • 16 Hecht MJ, Fellner F, Fellner C et al. Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J Neurol Sci 2002; 199: 59-65
  • 17 Waragai M. MRI and clinical features in amyotrophic lateral sclerosis. Neuroradiology 1997; 39: 847-851
  • 18 Wang S, Melhem ER, Poptani H et al. Neuroimaging in amyotrophic lateral sclerosis. Neurotherapeutics 2011; 8: 63-71
  • 19 Wang S, Melhem ER. Amyotrophic lateral sclerosis and primary lateral sclerosis: The role of diffusion tensor imaging and other advanced MR-based techniques as objective upper motor neuron markers. Ann N Y Acad Sci 2005; 1064: 61-77
  • 20 Neema M, Guss ZD, Stankiewicz JM et al. Normal findings on brain fluid-attenuated inversion recovery MR images at 3T. AJNR Am J Neuroradiol 2009; 30: 911-916
  • 21 Kassubek J, Bretschneider V, Sperfeld AD. Corticospinal tract MRI hyperintensity in X-linked Charcot-Marie-Tooth Disease. J Clin Neurosci 2005; 12: 588-589
  • 22 Agosta F, Chio A, Cosottini M et al. The present and the future of neuroimaging in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2010; 31: 1769-1777
  • 23 Oba H, Araki T, Ohtomo K et al. Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology 1993; 18: 843-846
  • 24 Ishikawa K, Nagura H, Yokota T et al. Signal loss in the motor cortex on magnetic resonance images in amyotrophic lateral sclerosis. Ann Neurol 1993; 33: 218-222
  • 25 Kassubek J, Unrath A, Huppertz HJ et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord 2005; 6: 213-220
  • 26 Fukui T, Kertesz A. Volumetric study of lobar atrophy in Pick complex and Alzheimer’s disease. J Neurol Sci 2000; 174: 111-121
  • 27 Rosen HJ, Gorno-Tempini ML, Goldman WP et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 2002; 58: 198-208
  • 28 Lindberg O, Ostberg P, Zandbelt BB et al. Cortical morphometric subclassification of frontotemporal lobar degeneration. AJNR Am J Neuroradiol 2009; 30: 1233-1239
  • 29 Tartaglia MC, Rosen HJ, Miller BL. Neuroimaging in dementia. Neurotherapeutics 2011; 8: 82-92
  • 30 Grosskreutz J, Peschel T, Unrath A et al. Whole brain-based computerized neuroimaging in ALS and other motor neuron disorders. Amyotroph Lateral Scler 2008; 9: 238-248
  • 31 Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage 2000; 11: 805-821
  • 32 Agosta F, Pagani E, Rocca MA et al. Voxel-based morphometry study of brain volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum Brain Mapp 2007; 28: 1430-1438
  • 33 Grosskreutz J, Kaufmann J, Fraedrich J et al. Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis. BMC Neurol 2006; 6: 17
  • 34 Kato S, Hayashi H, Yagishita A. Involvement of the frontotemporal lobe and limbic system in amyotrophic lateral sclerosis: as assessed by serial computed tomography and magnetic resonance imaging. J Neurol Sci 1993; 116: 52-58
  • 35 Mezzapesa DM, Ceccarelli A, Dicuonzo F et al. Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2007; 28: 255-259
  • 36 Kiernan JA, Hudson AJ. Frontal lobe atrophy in motor neuron diseases. Brain 1994; 117: 747-757
  • 37 Abrahams S, Goldstein LH, Suckling J et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol 2005; 252: 321-331
  • 38 Ellis CM, Suckling J, Amaro Jr E et al. Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology 2001; 57: 1571-1578
  • 39 Chen Z, Ma L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: A voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph Lateral Scler 2010; 11: 549-554
  • 40 Chang JL, Lomen-Hoerth C, Murphy J et al. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology 2005; 65: 75-80
  • 41 Agosta F, Gorno-Tempini ML, Pagani E et al. Longitudinal assessment of grey matter contraction in amyotrophic lateral sclerosis: A tensor based morphometry study. Amyotroph Lateral Scler 2009; 10: 168-174
  • 42 Murphy JM, Henry RG, Langmore S et al. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol 2007; 64: 530-534
  • 43 Turner MR, Agosta F, Bede P et al. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6: 319-337
  • 44 Mitsuyama Y, Inoue T. Clinical entity of frontotemporal dementia with motor neuron disease. Neuropathology 2009; 29: 649-654
  • 45 Tsujimoto M, Senda J, Ishihara T et al. Behavioral changes in early ALS correlate with voxel-based morphometry and diffusion tensor imaging. J Neurol Sci 2011; 307: 34-40
  • 46 Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 2000; 97: 11050-11055
  • 47 Roccatagliata L, Bonzano L, Mancardi G et al. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009; 10: 47-52
  • 48 Verstraete E, van den Heuvel MP, Veldink JH et al. Motor network degeneration in amyotrophic lateral sclerosis: a structural and functional connectivity study. PLoS One 2010; 5: e13664
  • 49 Verstraete E, Veldink JH, Hendrikse J et al. Structural MRI reveals cortical thinning in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2012; 83: 383-388
  • 50 Agosta F, Valsasina P, Riva N et al. The cortical signature of amyotrophic lateral sclerosis. PLoS One 2012; 7: e42816
  • 51 Rabinovici GD, Seeley WW, Kim EJ et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 2007; 22: 474-488
  • 52 Lillo P, Mioshi E, Burrell JR et al. Grey and White Matter Changes across the Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Continuum. PLoS One 2012; 7: e43993
  • 53 Borroni B, Brambati SM, Agosti C et al. Evidence of white matter changes on diffusion tensor imaging in frontotemporal dementia. Arch Neurol 2007; 64: 246-251
  • 54 Geser F, Lee VM, Trojanowski JQ. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. Neuropathology 2010; 30: 103-112
  • 55 Lillo P, Savage S, Mioshi E et al. Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotroph Lateral Scler 2012; 13: 102-109
  • 56 Beaulieu C. The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed 2002; 15: 435-455
  • 57 Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 2008; 34: 51-61
  • 58 Ellis CM, Simmons A, Jones DK et al. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 1999; 53: 1051-1058
  • 59 Graham JM, Papadakis N, Evans J et al. Diffusion tensor imaging for the assessment of upper motor neuron integrity in ALS. Neurology 2004; 63: 2111-2119
  • 60 Sach M, Winkler G, Glauche V et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004; 127: 340-350
  • 61 Iwata NK, Aoki S, Okabe S et al. Evaluation of corticospinal tracts in ALS with diffusion tensor MRI and brainstem stimulation. Neurology 2008; 70: 528-532
  • 62 Yin H, Cheng SHT, Zhang J et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging and fibre tractography study. Ann Acad Med Singapore 2008; 37: 411-415
  • 63 Lombardo F, Frijia F, Bongioanni P et al. Diffusion tensor MRI and MR spectroscopy in long lasting upper motor neuron involvement in amyotrophic lateral sclerosis. Arch Ital Biol 2009; 147: 69-82
  • 64 Sage CA, Van Hecke W, Peeters R et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp 2009; 30: 3657-3675
  • 65 Sage CA, Peeters RR, Gorner A et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007; 34: 486-499
  • 66 Senda J, Ito M, Watanabe H et al. Correlation between pyramidal tract degeneration and widespread white matter involvement in amyotrophic lateral sclerosis: A study with tractography and diffusion-tensor imaging. Amyotroph Lateral Scler 2009; 1-8
  • 67 Muller HP, Lule D, Unrath A et al. Complementary image analysis of diffusion tensor imaging and 3-dimensional t1-weighted imaging: white matter analysis in amyotrophic lateral sclerosis. J Neuroimaging 2011; 21: 24-33
  • 68 Canu E, Agosta F, Riva N et al. The topography of brain microstructural damage in amyotrophic lateral sclerosis assessed using diffusion tensor MR imaging. AJNR Am J Neuroradiol 2011; 32: 1307-1314
  • 69 Douaud G, Filippini N, Knight S et al. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain 2011;
  • 70 Iwata NK, Kwan JY, Danielian LE et al. White matter alterations differ in primary lateral sclerosis and amyotrophic lateral sclerosis. Brain 2011; 134: 2642-2655
  • 71 Li J, Pan P, Song W et al. A meta-analysis of diffusion tensor imaging studies in amyotrophic lateral sclerosis. Neurobiol Aging 2011;
  • 72 Ciccarelli O, Behrens TE, Johansen-Berg H et al. Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. Hum Brain Mapp 2009; 30: 615-624
  • 73 Ciccarelli O, Behrens TE, Altmann DR et al. Probabilistic diffusion tractography: a potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis. Brain 2006; 129: 1859-1871
  • 74 Smith MC. Nerve Fibre Degeneration in the Brain in Amyotrophic Lateral Sclerosis. J Neurol Neurosurg Psychiatry 1960; 23: 269-282
  • 75 Zhang Y, Schuff N, Woolley SC et al. Progression of white matter degeneration in amyotrophic lateral sclerosis: A diffusion tensor imaging study. Amyotroph Lateral Scler 2011; 12: 421-429
  • 76 Filippini N, Douaud G, Mackay CE et al. Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 2010; 75: 1645-1652
  • 77 Sarro L, Agosta F, Canu E et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR Am J Neuroradiol 2011; 32: 1866-1872
  • 78 Cirillo M, Esposito F, Tedeschi G et al. Widespread microstructural white matter involvement in amyotrophic lateral sclerosis: a whole-brain DTI study. AJNR Am J Neuroradiol 2012; 33: 1102-1108
  • 79 Krampfl K, Mohammadi B, Komissarow L et al. Mirror movements and ipsilateral motor evoked potentials in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2004; 5: 154-163
  • 80 Bartels C, Mertens N, Hofer S et al. Callosal dysfunction in amyotrophic lateral sclerosis correlates with diffusion tensor imaging of the central motor system. Neuromuscul Disord 2008; 18: 398-407
  • 81 Karandreas N, Papadopoulou M, Kokotis P et al. Impaired interhemispheric inhibition in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2007; 8: 112-118
  • 82 Sharma KR, Sheriff S, Maudsley A et al. Diffusion Tensor Imaging of Basal Ganglia and Thalamus in Amyotrophic Lateral Sclerosis. J Neuroimaging 2012;
  • 83 Agosta F, Pagani E, Petrolini M et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. AJNR Am J Neuroradiol 2010; 31: 1457-1461
  • 84 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133
  • 85 Rose S, Pannek K, Bell C et al. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study. Neuroimage 2012; 59: 2661-2669
  • 86 Zhang Y, Tartaglia MC, Schuff N et al. MRI Signatures of Brain Macrostructural Atrophy and Microstructural Degradation in Frontotemporal Lobar Degeneration Subtypes. J Alzheimers Dis 2012;
  • 87 Zhang Y, Schuff N, Du AT et al. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain 2009; 132: 2579-2592
  • 88 Matsuo K, Mizuno T, Yamada K et al. Cerebral white matter damage in frontotemporal dementia assessed by diffusion tensor tractography. Neuroradiology 2008; 50: 605-611
  • 89 Agosta F, Scola E, Canu E et al. White Matter Damage in Frontotemporal Lobar Degeneration Spectrum. Cereb Cortex. 2011
  • 90 Whitwell JL, Avula R, Senjem ML et al. Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology 2010; 74: 1279-1287
  • 91 Seeley WW, Crawford R, Rascovsky K et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Arch Neurol 2008; 65 () 249-255
  • 92 Burrell JR, Kiernan MC, Vucic S et al. Motor neuron dysfunction in frontotemporal dementia. Brain 2011; 134: 2582-2594
  • 93 Zhukareva V, Mann D, Pickering-Brown S et al. Sporadic Pick’s disease: a tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol 2002; 51: 730-739
  • 94 Geser F, Martinez-Lage M, Robinson J et al. Clinical and pathological continuum of multisystem TDP-43 proteinopathies. Arch Neurol 2009; 66: 180-189
  • 95 Filippi M, Rocca MA. Magnetization transfer magnetic resonance imaging of the brain, spinal cord, and optic nerve. Neurotherapeutics 2007; 4 () 401-413
  • 96 Carrara G, Carapelli C, Venturi F et al. A distinct MR imaging phenotype in amyotrophic lateral sclerosis: correlation between T1 magnetization transfer contrast hyperintensity along the corticospinal tract and diffusion tensor imaging analysis. AJNR Am J Neuroradiol 2012; 33: 733-739
  • 97 Cosottini M, Pesaresi I, Piazza S et al. Magnetization transfer imaging demonstrates a distributed pattern of microstructural changes of the cerebral cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2011; 32: 704-708
  • 98 Tanabe JL, Vermathen M, Miller R et al. Reduced MTR in the corticospinal tract and normal T2 in amyotrophic lateral sclerosis. Magn Reson Imaging 1998; 16: 1163-1169
  • 99 Kato Y, Matsumura K, Kinosada Y et al. Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 1997; 18: 1541-1547
  • 100 da Rocha AJ, Maia Jr AC, Valerio BC. Corticospinal tract MR signal-intensity pseudonormalization on magnetization transfer contrast imaging: a potential pitfall in the interpretation of the advanced compromise of upper motor neurons in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2012; 33: E79-E80
  • 101 Kalra S, Arnold DL. Magnetic resonance spectroscopy for monitoring neuronal integrity in amyotrophic lateral sclerosis. Adv Exp Med Biol 2006; 576: 275-282
  • 102 Duarte JM, Lei H, Mlynarik V et al. The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61: 342-362
  • 103 Rooney WD, Miller RG, Gelinas D et al. Decreased N-acetylaspartate in motor cortex and corticospinal tract in ALS. Neurology 1998; 50: 1800-1805
  • 104 Pohl C, Block W, Karitzky J et al. Proton magnetic resonance spectroscopy of the motor cortex in 70 patients with amyotrophic lateral sclerosis. Arch Neurol 2001; 58: 729-735
  • 105 Sarchielli P, Pelliccioli GP, Tarducci R et al. Magnetic resonance imaging and 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology 2001; 43: 189-197
  • 106 Wang S, Poptani H, Woo JH et al. Amyotrophic lateral sclerosis: diffusion-tensor and chemical shift MR imaging at 3.0 T. Radiology 2006; 239: 831-838
  • 107 Bowen BC, Pattany PM, Bradley WG et al. MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2000; 21: 647-658
  • 108 Nelles M, Block W, Traber F et al. Combined 3T diffusion tensor tractography and 1H-MR spectroscopy in motor neuron disease. AJNR Am J Neuroradiol 2008; 29: 1708-1714
  • 109 Pyra T, Hui B, Hanstock C et al. Combined structural and neurochemical evaluation of the corticospinal tract in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11: 157-165
  • 110 Cwik VA, Hanstock CC, Allen PS et al. Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 1998; 50: 72-77
  • 111 Pioro EP, Antel JP, Cashman NR et al. Detection of cortical neuron loss in motor neuron disease by proton magnetic resonance spectroscopic imaging in vivo. Neurology 1994; 44: 1933-1938
  • 112 Giroud M, Walker P, Bernard D et al. Reduced brain N-acetyl-aspartate in frontal lobes suggests neuronal loss in patients with amyotrophic lateral sclerosis. Neurol Res 1996; 18: 241-243
  • 113 Kalra S, Cashman NR, Genge A et al. Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 1998; 9: 1757-1761
  • 114 Coulthard E, Firbank M, English P et al. Proton magnetic resonance spectroscopy in frontotemporal dementia. J Neurol 2006; 253: 861-868
  • 115 Mihara M, Hattori N, Abe K et al. Magnetic resonance spectroscopic study of Alzheimer’s disease and frontotemporal dementia/Pick complex. Neuroreport 2006; 17: 413-416
  • 116 Ernst T, Chang L, Melchor R et al. Frontotemporal dementia and early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. Radiology 1997; 203: 829-836
  • 117 Hatazawa J, Brooks RA, Dalakas MC et al. Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study. J Comput Assist Tomogr 1988; 12: 630-636
  • 118 Habert MO, Lacomblez L, Maksud P et al. Brain perfusion imaging in amyotrophic lateral sclerosis: extent of cortical changes according to the severity and topography of motor impairment. Amyotroph Lateral Scler 2007; 8: 9-15
  • 119 Rule RR, Schuff N, Miller RG et al. Gray matter perfusion correlates with disease severity in ALS. Neurology 2010; 74: 821-827
  • 120 Kew JJ, Leigh PN, Playford ED et al. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain 1993; 116: 655-680
  • 121 Du AT, Jahng GH, Hayasaka S et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 2006; 67: 1215-1220
  • 122 Murray AD. Imaging Approaches for Dementia. AJNR Am J Neuroradiol 2011;
  • 123 Konrad C, Henningsen H, Bremer J et al. Pattern of cortical reorganization in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Exp Brain Res 2002; 143: 51-56
  • 124 Konrad C, Jansen A, Henningsen H et al. Subcortical reorganization in amyotrophic lateral sclerosis. Exp Brain Res 2006; 172: 361-369
  • 125 Schoenfeld MA, Tempelmann C, Gaul C et al. Functional motor compensation in amyotrophic lateral sclerosis. J Neurol 2005; 252: 944-952
  • 126 Stanton BR, Williams VC, Leigh PN et al. Altered cortical activation during a motor task in ALS. Evidence for involvement of central pathways. J Neurol 2007; 254: 1260-1267
  • 127 Turner MR, Kiernan MC. Does interneuronal dysfunction contribute to neurodegeneration in amyotrophic lateral sclerosis?. Amyotroph Lateral Scler 2012; 13: 245-250
  • 128 Cosottini M, Pesaresi I, Piazza S et al. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis. Exp Neurol 2012; 234: 169-180
  • 129 Han J, Ma L. Functional magnetic resonance imaging study of the brain in patients with amyotrophic lateral sclerosis. Chin Med Sci J 2006; 21: 228-233
  • 130 Lule D, Diekmann V, Anders S et al. Brain responses to emotional stimuli in patients with amyotrophic lateral sclerosis (ALS). J Neurol 2007; 254: 519-527
  • 131 Mohammadi B, Kollewe K, Samii A et al. Changes of resting state brain networks in amyotrophic lateral sclerosis. Exp Neurol 2009; 217: 147-153
  • 132 Kollewe K, Korner S, Dengler R et al. Magnetic resonance imaging in amyotrophic lateral sclerosis. Neurol Res Int 2012; 2012 608501
  • 133 Agosta F, Canu E, Valsasina P et al. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol Aging 2012;
  • 134 Jelsone-Swain LM, Fling BW, Seidler RD et al. Reduced Interhemispheric Functional Connectivity in the Motor Cortex during Rest in Limb-Onset Amyotrophic Lateral Sclerosis. Front Syst Neurosci 2010; 4: 158
  • 135 Agosta F, Valsasina P, Absinta M et al. Sensorimotor functional connectivity changes in amyotrophic lateral sclerosis. Cereb Cortex 2011; 21: 2291-2298
  • 136 Abrahams S, Goldstein LH, Simmons A et al. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 2004; 127: 1507-1517
  • 137 Farb NA, Grady CL, Strother S et al. Abnormal network connectivity in frontotemporal dementia: Evidence for prefrontal isolation. Cortex 2012;
  • 138 Turner MR, Grosskreutz J, Kassubek J et al. Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol 2011; 10: 400-403
  • 139 Filippi M, Agosta F, Abrahams S et al. EFNS guidelines on the use of neuroimaging in the management of motor neuron diseases. Eur J Neurol 2010; 17: 526-e20