Rofo 2014; 186(4): 388-393
DOI: 10.1055/s-0033-1355543
Vessels
© Georg Thieme Verlag KG Stuttgart · New York

Monitoring of Gadolinium-BOPTA Uptake into the Vessel Wall during Magnetic Resonance (MR)-Guided Angioplasty of the Peripheral Arteries with a Paclitaxel/Gadolinium-BOPTA-Coated Balloon: An Experimental Study at 3 Tesla

Monitoring von Gadolinium-BOPTA-Aufnahme in die Gefäßwand während einer Magnet Resonanz (MR) gesteuerten Angioplastie der peripheren Gefäße mit einem beschichteten Ballon: Eine experimentelle Studie an einem 3 Telsa MR-Scanner
M. Neizel
1   Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf
,
A. Ruebben
2   Aachen Resonance, Aachen Resonance, Aachen
,
N. Weiss
2   Aachen Resonance, Aachen Resonance, Aachen
,
R. W. Günther
3   Deparment of Radiology, University Hospital Aachen
,
M. Kelm
1   Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf
,
G. A. Krombach
4   Department of Radiology, University Hospital Giessen
› Author Affiliations
Further Information

Publication History

25 October 2012

19 August 2013

Publication Date:
18 October 2013 (online)

Abstract

Purpose: The success of paclitaxel distribution within the vessel wall during paclitaxel-coated balloon angioplasty to prevent restenosis cannot be monitored under X-ray guidance. The aim of this pilot study was to demonstrate the feasibility of monitoring Gadolinium-BOPTA delivery within the vessel wall during magnetic resonance (MR)-guided paclitaxel/Gadolinium-BOPTA-coated balloon angioplasty of the peripheral arteries.

Materials and Methods: 6 pigs (47 ± 2 kg) were investigated. All experiments were performed using a 3 Tesla MR scanner. MR-guided bilateral angioplasty of the iliac arteries was performed using a paclitaxel/MR contrast agent-coated balloon catheter. The feasibility of monitoring the delivery of Gadolinium-BOPTA to the vessel wall was assessed in 4 animals. In two additional animals, bilateral stenosis was surgically induced in the iliac arteries. Delivery of paclitaxel to the vessel wall was monitored using a 3 D T1-weighted gradient echo (GE) sequence for delineation of the vessel wall. Normalized signal intensity (SI) of the vessel wall was measured before and repeatedly after the intervention for 45 min. in all animals.

Results: Paclitaxel/gadolinium-BOPTA-coated balloon angioplasty was successfully accomplished in all iliac arteries (n = 12). In animals with stenosis MR-angiography demonstrated successful dilatation (n = 4). The normalized SI of the vessel wall on T1-weighted GE images significantly increased after the intervention in all animals with and without stenosis for more than 45 min. (p < 0.001).

Conclusion: Monitoring of Gadolinium-BOPTA into the vessel wall during MR-guided coated balloon angioplasty is feasible. This is a first step towards providing a tool for the online control of homogenous drug delivery after paclitaxel-coated balloon angioplasty.

Key Points:

• Monitoring of gadolinium-BOPTA uptake into the vessel wall during MR-guided coated balloon angioplasty is feasible.

• Endovascular MR-guided interventions on a 3 Tesla MR scanner are feasible.

• This is a first step towards providing a tool for online control of homogenous drug delivery after paclitaxel-coated balloon angioplasty.

Citation Format:

• Neizel M, Ruebben A, Weiss N et al. Monitoring of Gadolinium-BOPTA Uptake into the Vessel Wall during Magnetic Resonance (MR)-Guided Angioplasty of the Peripheral Arteries with a Paclitaxel/Gadolinium-BOPTA-Coated Balloon: An Experimental Study at 3 Tesla. Fortschr Röntgenstr 2014; 186: 388 – 393

Zusammenfassung

Ziel: Nach Paclitaxel-beschichteter Ballonangioplastie kann unter Röntgendurchleuchtung nicht kontrolliert werden, ob das Paclitaxel wirklich in die Gefäßwand aufgenommen wurde und so die Restenose-Rate vermindern kann. Ziel dieser Studie war es zu untersuchen, ob ein Monitoring von Gadolinium-BOPTA-Aufnahme in die Gefäßwand nach MR-gesteuerter beschichteter Ballon-Angioplastie der peripheren Gefäße möglich ist.

Material und Methoden: 6 Schweine (Gewicht 47 ± 2 kg) wurden untersucht. Alle Untersuchungen wurden an einem 3 Tesla MRT-Scanner durchgeführt. Eine MR-gesteuerte bilaterale Angioplastie der Iliacalgefäße wurde mit einem Paclitaxel/Gadolinium-BOPTA beschichtetem Ballonkatheter durchgeführt. Die Machbarkeit des Monitorings der Gadolinium-BOPTA-Aufnahme in die Gefäßwand wurde an 4 Schweinen untersucht. Zusätzlich wurden bei 2 weiteren Schweinen bilaterale Stenosen der Iliacalgefäße induziert. Die Aufnahme von Gadolinium-BOPTA in die Gefäßwand wurde mit einer T1-gewichteten Gradientenecho-Sequenz visualisiert. Zusätzlich wurde die normalisierte Signalintensität der Gefäßwand bei allen Tieren vor und bis zu 45 Minuten nach der Intervention gemessen.

Ergebnisse: Die Paclitaxel/Gadolinium-BOPTA beschichtete Ballonangioplastie wurde in allen Iliacalarterien erfolgreich durchgeführt (n = 12). Bei allen Tieren mit Iliaca-Stenose zeigte sich in der MR-Angiografie eine erfolgreiche Behandlung der Iliacalstenosen (n = 4). Die normalisierte Signalintensität der Gefäßwand stieg in beiden Gruppen signifikant nach der Intervention an (p < 0,001).

Schlussfolgerung: Visualisierung der Gadolinium-BOPTA-Aufnahme in die Gefäßwand während einer MR-gesteuerten Paclitaxel/Gadolinium-BOPTA beschichteten Ballonangioplastie ist machbar. Dies ist ein erster Schritt in die Richtung, eine Therapiekontrolle zu ermöglichen, mit welcher die homogene Medikamentenaufnahme nach beschichteter Ballonangioplastie nachgewiesen werden könnte.

 
  • References

  • 1 Minar E, Pokrajac B, Maca T et al. Endovascular brachytherapy for prophylaxis of restenosis after femoropopliteal angioplasty: results of a prospective randomized study. Circulation 2000; 102: 2694-2699
  • 2 Heuser L, Arnold CN, Morhard D et al. DeGIR-Qualitätsreport 2011-Bericht über die Behandlungsqualität minimalinvasiver Methoden. Fortschr Röntgenstr 2012; 184: 570-576
  • 3 Iakovou I, Schmidt T, Bonizzoni E et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA: the journal of the American Medical Association 2005; 293: 2126-2130
  • 4 Mauri L, Hsieh WH, Massaro JM et al. Stent thrombosis in randomized clinical trials of drug-eluting stents. The New England journal of medicine 2007; 356: 1020-1029
  • 5 Axel DI, Kunert W, Goggelmann C et al. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 1997; 96: 636-645
  • 6 Scheller B, Speck U, Romeike B et al. Contrast media as carriers for local drug delivery. Successful inhibition of neointimal proliferation in the porcine coronary stent model. European heart journal 2003; 24: 1462-1467
  • 7 Scheller B, Hehrlein C, Bocksch W et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. The New England journal of medicine 2006; 355: 2113-2124
  • 8 Tepe G, Zeller T, Albrecht T et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. The New England journal of medicine 2008; 358: 689-699
  • 9 Buecker A, Adam GB, Neuerburg JM et al. Simultaneous real-time visualization of the catheter tip and vascular anatomy for MR-guided PTA of iliac arteries in an animal model. Journal of magnetic resonance imaging: JMRI 2002; 16: 201-208
  • 10 Dick AJ, Raman VK, Raval AN et al. Invasive human magnetic resonance imaging: feasibility during revascularization in a combined XMR suite. Catheterization and cardiovascular interventions. official journal of the Society for Cardiac Angiography & Interventions 2005; 64: 265-274
  • 11 Manke C, Nitz WR, Djavidani B et al. MR imaging-guided stent placement in iliac arterial stenoses: a feasibility study. Radiology 2001; 219: 527-534
  • 12 Raval AN, Karmarkar PV, Guttman MA et al. Real-time magnetic resonance imaging-guided endovascular recanalization of chronic total arterial occlusion in a swine model. Circulation 2006; 113: 1101-1107
  • 13 Yang X, Atalar E. Intravascular MR imaging-guided balloon angioplasty with an MR imaging guide wire: feasibility study in rabbits. Radiology 2000; 217: 501-506
  • 14 Krombach GA, Wehner M, Perez-Bouza A et al. Magnetic resonance-guided angioplasty with delivery of contrast-media doped solutions to the vessel wall: an experimental study in swine. Investigative radiology 2008; 43: 530-537
  • 15 Scheller B, Speck U, Abramjuk C et al. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004; 110: 810-814
  • 16 Scheller B, Speck U, Schmitt A et al. Addition of paclitaxel to contrast media prevents restenosis after coronary stent implantation. Journal of the American College of Cardiology 2003; 42: 1415-1420
  • 17 Freyhardt P, Zeller T, Kroncke TJ et al. Plasma levels following application of paclitaxel-coated balloon catheters in patients with stenotic or occluded femoropopliteal arteries. Fortschr Röntgenstr 2011; 183: 448-455
  • 18 Unverdorben M, Vallbracht C, Cremers B et al. Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 2009; 119: 2986-2994
  • 19 Saeed M, Lee R, Martin A et al. Transendocardial delivery of extracellular myocardial markers by using combination X-ray/MR fluoroscopic guidance: feasibility study in dogs. Radiology 2004; 231: 689-696
  • 20 Lederman RJ, Guttman MA, Peters DC et al. Catheter-based endomyocardial injection with real-time magnetic resonance imaging. Circulation 2002; 105: 1282-1284
  • 21 Herdeg C, Oberhoff M, Baumbach A et al. Local drug delivery with porous balloons in the rabbit: assessment of vascular injury for an improvement of application parameters. Catheterization and cardiovascular diagnosis 1997; 41: 308-314
  • 22 Oberhoff M, Kunert W, Herdeg C et al. Inhibition of smooth muscle cell proliferation after local drug delivery of the antimitotic drug paclitaxel using a porous balloon catheter. Basic research in cardiology 2001; 96: 275-282
  • 23 Kerwin WS, Zhao X, Yuan C et al. Contrast-enhanced MRI of carotid atherosclerosis: dependence on contrast agent. Journal of magnetic resonance imaging: JMRI 2009; 30: 35-40
  • 24 Hayashi K, Mani V, Nemade A et al. Comparison of 3D-diffusion-prepared segmented steady-state free precession and 2D fast spin echo imaging of femoral artery atherosclerosis. The international journal of cardiovascular imaging 2010; 26: 309-321
  • 25 Kramer NA, Kruger S, Schmitz S et al. Preclinical evaluation of a novel fiber compound MR guidewire in vivo. Investigative radiology 2009; 44: 390-397