Dtsch Med Wochenschr 2014; 139(07): 334-338
DOI: 10.1055/s-0033-1360039
Übersicht | Review article
Onkologie, Psychosomatik
© Georg Thieme Verlag KG Stuttgart · New York

Stress und Pankreaskarzinom

β-adrenerge Signaltransduktion und TumorbiologieStress and pancreatic carcinoma – β-adrenergic signaling and tumor biology
J. Hefner
1   Schwerpunkt Psychosomatische Medizin und Psychotherapie, Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg
,
H. Csef
1   Schwerpunkt Psychosomatische Medizin und Psychotherapie, Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg
,
V. Kunzmann
2   Schwerpunkt Onkologie, Medizinische Klinik und Poliklinik II, Universitätsklinik Würzburg
› Author Affiliations
Further Information

Publication History

04 July 2013

02 October 2013

Publication Date:
04 February 2014 (online)

Zusammenfassung

Aus Untersuchungen zu verschiedenen Karzinomen sind Regulationsmöglichkeiten der Tumorbiologie durch die β-adrenerge Signaltransduktion bekannt. Bis vor wenigen Jahren wurde das Pankreaskarzinom hierzu vergleichsweise wenig beforscht. Dabei sind neue Erkenntnisse zu Biologie und Therapieoptionen aufgrund der Inzidenz und ungünstigen Prognose gerade bei dieser Tumorentität von besonderer Bedeutung. Inzwischen beschreiben mehrere Arbeiten zum β-adrenergen System Einflüsse auf das Pankreaskarzinom in vitro und in vivo. Diese beziehen sich sowohl auf das Proliferations-und Apoptoseverhalten der Karzinomzellen als auch auf Wechselwirkungen mit dem Tumor-Microenvironment und Folgen für die Disseminations-und Metastasierungsneigung. Im Gegensatz zu anderen malignen Tumoren ergeben sich beim Pankreaskarzinom sogar Hinweise auf einen Zusammenhang zwischen β-adrenergen Signalwegen und dem Neuauftreten der Erkrankung. In der folgenden Arbeit sollen die wesentlichen Erkenntnisse zusammengefasst und Implikationen für die weitere Forschung beschrieben werden.

Abstract

In several carcinomas, β-adrenergic signaling has been found to regulate relevant processes of cancer biology. Until recently, pancreatic cancer has not been in the focus of respective research. But in view of the incidence and poor prognosis of pancreatic cancer, new insights in biology and therapeutic strategies are of prime importance. Nowadays, several reports describe influences of the catecholaminergic system on pancreatic cancer in vitro and in vivo. Effects were shown on proliferation and apoptosis of carcinoma cells as well as on interactions with tumor-microenvironment and dissemination and metastasis formation. In contrast to other entities, evidence even suggests links between β-adrenergic signaling and initiation of the disease. The following report summarizes the most relevant results demonstrating implications for further research and possible interventions.

 
  • Literatur

  • 1 Al-Wadei HA, Al-Wadei MH, Schuller HM. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 2009; 20: 477-482
  • 2 Al-Wadei HA, Ullah MF, Al-Wadei M. GABA (gamma-aminobutyric acid), a non-protein amino acid counters the beta-adrenergic cascadeactivated oncogenic signaling in pancreatic cancer: a review of experimental evidence. Mol Nutr Food Res 2011; 55: 1745-1758
  • 3 Al-Wadei MH, Al-Wadei HA, Schuller HM. Pancreatic cancer cells and normal pancreatic duct epithelial cells express an autocrine catecholamine loop that is activated by nicotinic acetylcholine receptors alpha3, alpha5, and alpha7. Mol Cancer Res 2012; 10: 239-249
  • 4 Almhanna K, Philip PA. Defining new paradigms for the treatment of pancreatic cancer. Curr Treat Options Oncol 2011; 12: 111-125
  • 5 Antoni MH, Lutgendorf SK, Cole SW et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 2006; 6: 240-248
  • 6 Chida Y, Hamer M, Wardle J et al. Do stress-related psychosocial factors contribute to cancer incidence and survival?. Nat Clin Pract Oncol 2008; 5: 466-475
  • 7 Clark KL, Loscalzo M, Trask PC et al. Psychological distress in patients with pancreatic cancer – an understudied group. Psychooncology 2010; 19: 1313-1320
  • 8 Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 2012; 18: 1201-1206
  • 9 Conroy T, Desseigne F, Ychou M et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825
  • 10 Franek M, Vaculin S, Rokyta R. GABA(B) receptor agonist baclofen has non-specific antinociceptive effect in the model of peripheral neuropathy in the rat. Physiol Res 2004; 53: 351-355
  • 11 Gladkevich A, Korf J, Hakobyan VP et al. The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 2006; 124: 1-8
  • 12 Guo K, Ma Q, Wang L et al. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 2009; 22: 825-830
  • 13 Hamer M, Chida Y, Molloy GJ. Psychological distress and cancer mortality. J Psychosom Res 2009; 66: 255-258
  • 14 Hefner J, Csef H. Psychoneuroimmunologie und Krebs. Neue Ergebnisse zu psychosozialen Einflüssen auf Tumorerkrankungen. Onkologe 2011; 9: 839-850
  • 15 Herrmann R, Bodoky G, Ruhstaller T et al. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the Swiss Group for Clinical Cancer Research and the Central European Cooperative Oncology Group. J Clin Oncol 2007; 25: 2212-2217
  • 16 Hidalgo M. Pancreatic cancer. N Engl J Med 2010; 362: 1605-1617
  • 17 Hieble JP, Bondinell WE, Ruffolo Jr RR. Alpha-and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem 1995; 38: 3415-3444
  • 18 Huang XY, Wang HC, Yuan Z et al. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology 2012; 59: 889-893
  • 19 Lin X, Luo K, Lv Z et al. β-adrenoceptor action on pancreatic cancer cell proliferation and tumor growth in mice. Hepatogastroenterology 2012; 59: 584-588
  • 20 Lowenfels AB, Maisonneuve P. Risk factors for pancreatic cancer. J Cell Biochem 2005; 95: 649-656
  • 21 Mancuso A, Calabro F, Sternberg CN. Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol 2006; 58: 231-241
  • 22 McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res 2000; 886: 172-189
  • 23 Moreno-Smith M, Lutgendorf SK, Sood AK. Impact of stress on cancer metastasis. Future Oncol 2010; 6: 1863-1881
  • 24 Paez D, Labonte MJ, Lenz HJ. Pancreatic cancer: medical management (novel chemotherapeutics). Gastroenterol Clin North Am 2012; 41: 189-209
  • 25 Parkin DM, Bray F, Ferlay J et al. Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001; 94: 153-156
  • 26 Philip PA, Benedetti J, Corless CL et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 2010; 28: 3605-10
  • 27 Reddy LH, Marque PE, Dubernet C et al. Preclinical toxicology (subacute and acute) and efficacy of a new squalenoyl gemcitabine anticancer nanomedicine. J Pharmacol Exp Ther 2008; 325: 484-90
  • 28 Satin JR, Linden W, Phillips MJ. Depression as a predictor of disease progression and mortality in cancer patients: a meta-analysis. Cancer 2009; 115: 5349-5361
  • 29 Schuller HM, Al-Wadei HA, Majidi M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer 2008; 112: 767-778
  • 30 Schuller HM, Al-Wadei HA, Ullah MF et al. Regulation of pancreatic cancer by neuropsychological stress responses: a novel target for intervention. Carcinogenesis 2012; 33: 191-196
  • 31 Shan T, Ma Q, Zhang D et al. β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol 2011; 665: 1-7
  • 32 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63: 11-30
  • 33 Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry 2003; 54: 269-282
  • 34 Thaker PH, Han LY, Kamat AA et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006; 12: 939-944
  • 35 Thaker PH, Lutgendorf SK, Sood AK. The neuroendocrine impact of chronic stress on cancer. Cell Cycle 2007; 6: 430-433
  • 36 Troiani T, Martinelli E, Capasso A et al. Targeting EGFR in pancreatic cancer treatment. Curr Drug Targets 2012; 13: 802-810
  • 37 Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53: 865-871
  • 38 Wadler S. Molecular targeting in pancreatic cancer. Rev Recent Clin Trials 2007; 2: 69-75
  • 39 Weddle DL, Tithoff P, Williams M et al. Beta-adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas. Carcinogenesis 2001; 22: 473-479
  • 40 Zabora J, BrintzenhofeSzoc K, Curbow B et al. The prevalence of psychological distress by cancer site. Psychooncology 2001; 10: 19-28
  • 41 Zhang D, Ma Q, Shen S et al. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas 2009; 38: 94-100
  • 42 Zhang D, Ma QY, Hu HT et al. β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkappaB and AP-1. Cancer Biol Ther 2010; 10: 19-29
  • 43 Zhang D, Ma Q, Wang Z et al. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFkappaB pathway. Mol Cancer 2011; 10: 146