Pädiatrie up2date, Table of Contents Pädiatrie up2date 2014; 09(01): 43-60DOI: 10.1055/s-0034-1364913 Varia © Georg Thieme Verlag KG Stuttgart · New YorkModerne Bildgebungstechniken in der pädiatrischen Radiologie Authors G. Staatz M. Stenzel H.-J. Mentzel Recommend Article Abstract Buy Article(opens in new window) All articles of this category(opens in new window) Full Text References Literatur 1 Sheth S, Branstetter BF, Escott EJ. Appearance of normal cranial nerves on steady-state free precession MR images. Radiographics 2009; 29: 1045-1055 2 Gaser C, Altaye M, Wilke M et al. Unified segmentation without tissue priors. Neuro Image 2007; 36: 68 3 Renz D, Hahn HK, Schmidt P et al. Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland. Neuroradiol 2011; 53: 233-244 4 Mentzel HJ, Lincke T, Vilser C et al. Comparison of a novel semi-automatic segmentation technique and manual tracing technique for MR volumetric measurements of the pituitary gland in children and adolescents. Pediatr Radiol 2013; 43: 597 5 Poretti A, Boltshauser E, Loenneker T et al. Diffusion tensor imaging in Jourbet syndrome. Am J Neuroradiol 2007; 28: 1929-1933 6 Rollins NK. Clinical applications of diffusion tensor imaging and tractography in children. Pediatr Radiol 2007; 37: 769-780 7 Wahl M, Barkovich AJ, Mukherjee P. Diffusion imaging and tractography of congenital brain malformations. Pediatr Radiol 2010; 4: 59-67 8 Xu D, Mukherjee P, Barkovich AJ. Pediatric brain injury: can DTI scalars predict functional outcome?. Pediatr Radiol 2013; 43: 55-59 9 Vomstein K, Stieltjes B, Poustka L. Strukturelle Konnektivität und Diffusionstensor-Bildgebung bei Autismus-Spektrum-Störungen. Z Kinder-Jugendpsychiatrie. . Psychother 2013; 41: 59-68 10 Braakman HMH, van der Kruijs SJM, Vaessen MJ et al. Microstructural and functional MRI studies of cognitive impairment in epilepsy. Epilepsia 2012; 53: 1690-1699 11 Vasung L, Fischi-Gomez E, Hüppi PS. Multimodality evaluation of the pediatric brain: DTI and its competitors. Pediatr Radiol 2013; 43: 60-68 12 Reichenbach JR, Haacke EM. High-resolution BOLD veongraphic imaging: a window into brain function. NMR Biomed 2001; 15: 453-467 13 Deistung A, Mentzel HJ, Rauscher A et al. Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Z Med Phys 2006; 16: 261-267 14 Schweser F, Deistung A, Lehr BW et al. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 2010; 37: 5165-5178 15 Schweser F, Deistung A, Lehr BW et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism?. NeuroImage 2011; 54: 2789-2807 16 Schweser F, Sommer K, Deistung A et al. Quantitative suceptibility mapping for investigation subtle susceptibility variations in the human brain. NeuroImage 2012; 62: 2083-2100 17 Deistung A, Schäfer A, Schweser F et al. Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuro Image 2013; 65: 299-314 18 Kim SG, Ogawa S. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals. J Cereb Blood Flow Metab 2012; 32: 1188-1206 19 Dorn M, Lidzba K, Bevot A et al. Long-term neurobiological consequences of early postnatal hCMV-infection in former preterms: a functional MRI study. Hum Brain Mapp 2013; 20 O’Shaughnessy ES, Berl MM, Moore EN et al. Pediatric functional magnetic resonance imaging (fMRI): Issues and applications. J Child Neurol 2008; 23: 791-801 21 Ebner K, Lidzba K, Hauser TK et al. Assessing language and visuospatial functions with one task: A „dual use“ approach to performing fMRI in children. NeuroImage 2011; 58: 923-929 22 Schafer RJ, Lacadie C, Vohr B et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain 2009; 132: 661-670 23 Wilke M, Lidzba K, Staudt M et al. An fMRI task battery for assessing hemispheric language dominance in children. Neuro Image 2006; 32: 400-410 24 Zsoter A, Staudt M, Wilke M. Identification of successful clinical fMRI sessions in children: an objective approach. Neuropediatrics 2012; 43: 249-257 25 Asenbaum U, Brugger PC, Woitek R et al. Indikationen und Technik der fetalen Magnetresonanztomografie. Radiologe 2013; 53: 109-115 26 Blondin D, Turowski B, Schaper J. Fetales MRT. Rofo 2007; 179: 111-118 27 Hirsch W, Sorge I. Fetale MRT-Diagnostik. Frauenheilkunde up2date 2012; 5: 305-327 28 Schöpf V, Dittrich E, Berger-Kulemann V et al. Zukunftsweisende MRT-Techniken des fetalen Gehirns. Radiologe 2013; 53: 136-140 29 Recio RodríguezM, Martínez de Vega V, Cano AlonsoR et al. MR imaging of thoracic abnormalities in the fetus. Radiographics 2012; 32: 305-321 30 Woitek R, Brugger PC, Asenbaum U et al. Fetale Magnetresonanztomografie thorakaler und abdomineller Malformationen. Radiologe 2013; 53: 123-129 31 Schäfer JF, Kramer U. Ganzkörper-MRT bei Kindern und Jugendlichen. Fortschr Röntgenstr 2011; 183: 24-36 32 Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 2011; 31: 1757-1772 33 Darge K, Jaramillo D, Siegel MJ. Whole-body MRI in children: current status and future applications. Eur J Radiol 2008; 68: 289-298 34 Perez-Rossello JM, Connolly SA, Newton AW et al. Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol 2010; 195: 744-750