Pädiatrie up2date 2014; 09(02): 183-214
DOI: 10.1055/s-0034-1365683
Neuropädiatrie/Psychiatrie
© Georg Thieme Verlag KG Stuttgart · New York

Zerebralparese: ein Update

Andreas Meyer-Heim
,
Hubertus J. A. van Hedel
,
Thomas Baumann
Further Information

Publication History

Publication Date:
01 June 2014 (online)

Zusammenfassung

Die Zerebralparese ist der häufigste Grund für eine motorische Störung im Kindesalter, wobei auch Komorbiditäten wie neuropsychologische Funktionsdefizite, Lernbehinderungen oder Epilepsie mit der Diagnose einhergehen können. Die funktionelle Einteilung der Zerebralparese hat in den letzten Jahren neben der rein neurologischen Klassifikation an Bedeutung gewonnen. Diese Klassifikationen helfen – auch unter Einbezug der ICF – die Therapien optimal auf die Bedürfnisse des Kindes anzupassen. Ein Kind und dessen Eltern müssen ärztlich und therapeutisch über die verschiedenen Entwicklungs- und Wachstumsperioden begleitet werden, um zu verhindern, dass Sekundärschäden die Funktionen und Aktivitäten dieser Kinder verschlechtern. Die Koordination der multiprofessionellen therapeutischen Maßnahmen ist eine anspruchsvolle Aufgabe und erfordert neben einem konstanten Fallmanagement einen engen Einbezug der Kinder und ihrer Eltern.

 
  • Literatur

  • 1 Heinen F, Bartens W Hrsg. Das Kind und die Spastik. Bern: Hans Huber; 2001
  • 2 Paneth N, Hong T, Korzenieswki S. The descriptive epidemiology of cerebral palsy. Clin Perinatol 2006; 33: 251-267
  • 3 Nelson KB. Causative factors in cerebral palsy. Clin Obstet Gynecol 2008; 51: 749-762
  • 4 Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009; 8: 110-124
  • 5 Blickstein I. Do multiple gestations raise the risk of cerebral palsy?. Clin Perinatol 2004; 31: 395-408
  • 6 Pharoah PO. Risk of cerebral palsy in multiple pregnancies. Clin Perinatol 2006; 33: 301-313
  • 7 Little WJ. On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond 1862; 3: 294-344
  • 8 Scrutton D. The classification of the cerebral palsies. Dev Med Child Neurol 1992; 34: 833
  • 9 Koman LA, Smith BP, Shilt JS. Cerebral palsy. Lancet 2004; 363: 1619-1631
  • 10 Bax M, Goldstein M, Rosenbaum P et al. Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 2005; 47: 571-576
  • 11 Cans C, De-la-Cruz J, Mermeet MA. Epidemiology of cerebral palsy. Paediatr Child Health 2008; 18: 393-398
  • 12 Krägeloh-Mann I, Cans C. Cerebral palsy update. Brain Dev 2009; 31: 537-544
  • 13 O’Shea TM. Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol 2008; 51: 816-828
  • 14 Palisano R, Rosenbaum P, Walter S et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997; 39: 214-223
  • 15 Rosenbaum PL, Walter SD, Hanna SE et al. Prognosis for gross motor function in cerebral palsy: creation of motor development curves. JAMA 2002; 288: 1357-1363
  • 16 Eliasson AC, Krumlinde-Sundholm L, Rösblad B et al. The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol 2006; 48: 549-554
  • 17 Hidecker MJC, Paneth N, Rosenbaum PL et al. Developing and validating the Communication Function Classification System (CFCS) for individuals with cerebral palsy. Dev Med Child Neurol 2011; 53: 704-710
  • 18 Baumann T. Entwicklungspädiatrische Säuglingsuntersuchung. Pädiatrie up2date 2009; 11: 51-67
  • 19 Prechtl HF. General movement assessment as a method of developmental neurology: new paradigms and their consequences. Devl Med Child Neurol 2001; 43: 36-42
  • 20 Ferrari A. Interpretative dimensions of infantile cerebral paralysis. In: Papine M, Pasquinelli A, Gidoni EA, eds. Development, handicap, rehabilitation, practice and theory. Amsterdam: Excerpta Medica; 1990
  • 21 Ferrari A, Cioni G Hrsg. Infantile CP. Berlin: Springer; 1998
  • 22 Baumann T. Atlas der Entwicklungsdiagnostik; Vorsorgeuntersuchungen von U1 bis U10/J1. Stuttgart: Thieme; 2007: 315-334
  • 23 Baumann T. Atlas der Entwicklungsdiagnostik. 3. Aufl. Stuttgart: Thieme; 2013
  • 24 Hollenweger J, Kraus de Camargo O eds. ICF-CY, Internationale Klassifkation der Funktionsfähigkeit, Behinderung und Gesundheit bei Kinder und Jugendlichen. WHO. Bern: Hans Huber; 2011
  • 25 Majnemer A ed. Measures for children with developmental disabilities: an ICF-CY approach. London, UK: MacKeith Press; 2012
  • 26 Juenger H, Kuhnke N, Braun C et al. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Dev Med Child Neurol 2013; 55: 941-951
  • 27 Stevenson RD, Conaway M, Chumlea WC et al. North American Growth in Cerebral Palsy Study. Growth and health in children with moderate-to-severe cerebral palsy. Pediatrics 2006; 118: 1010-1018
  • 28 Brooks J, Day S, Shavelle R et al. Low weight, morbidity, and mortality in children with cerebral palsy: new clinical growth charts. Pediatrics 2011; 128: 299-307
  • 29 Terjesen T. The natural history of hip development in cerebral palsy. Dev Med Child Neurol 2012; 54: 951-957
  • 30 Gough M. Continuous postural management and the prevention of deformity in children with cerebral palsy: an appraisal. Dev Med Child Neurol 2009; 51: 105-110
  • 31 Wirth CJ, Zichner L, Tschauner C. Orthopädie – Becken, Hüfte. Stuttgart: Thieme; 2004: 260
  • 32 Loeters MJ, Maathuis CG, Hadders-Algra M. Risk factors for emergence and progression of scoliosis in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol 2010; 52: 605-611
  • 33 Cobb JR. Outline for the study of scoliosis. In: Arbor A, Edwards JW, eds. Instructional course lectures. Am Acad Orthoped Surg. 1948: 5
  • 34 Bothz C, Meyer-Heim A, Min K. Changes in Health Related Quality of Life (HRQL) after spinal fusion and scoliosis correction in patients with cerebral palsy. J Pediatr Orthop 2011; 31: 668-673
  • 35 Wren TA, Otsuka NY, Bowen RE et al. Gait posture. Influence of gait analysis on decision-making for lower extremity orthopaedic surgery: Baseline data from a randomized controlled trial. Gait and Posture 2011; 34: 364-369
  • 36 Gage JR, Schwartz MH, Koop E et al. The identification and treatment of gait problems in cerebral palsy. Clinics in Developmental Medicine 180–181. London: Mac Keith Press; 2009
  • 37 Beckung E, White-Koning M, Marcelli M et al. Health status of children with cerebral palsy living in Europe: a multi-centre study. Child Care Health Dev 2008; 34: 806-814
  • 38 Wallace SJ. Epilepsy in cerebral palsy. Dev Med Child Neurol 2001; 43: 713-717
  • 39 Aksu F. Nature and prognosis of seizures in patients with cerebral palsy. Dev Med Child Neurol 1990; 32: 661-668
  • 40 Kraus de Camargo O, Simon L. Die ICF in der Praxis. Bern: Hogrefe AG Hans Huber; 2013: 23-29
  • 41 McColl MA, Law M, Baptiste S et al. Targeted applications of the Canadian Occupational Performance Measure. Can J Occup Ther 2005; 72: 298-300
  • 42 Kollen BJ, Lennon S, Lyons B et al. The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence?. Stroke 2009; 40: 89-97
  • 43 Knecht B, Eugster Büsch F, Meyer-Heim A. Neurorehabilitation im Kindes- und Jugendalter. Ars Medici. Pädiatrie 2009; 1: 6-8
  • 44 Damiano DL. Activity, activity, activity: rethinking our physical therapy approach to cerebral palsy. Phys Ther 2006; 86: 1534-1540
  • 45 Kwakkel G, van Peppen R, Wagenaar RC et al. Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke 2004; 35: 2529-2539
  • 46 Trivedi R, Gupta RK, Shah V et al. Treatment-induced plasticity in cerebral palsy: a diffusion tensor imaging study. Pediatr Neurol 2008; 39 : 341-349
  • 47 die rodtegg, Stiftung für Menschen mit körperlicher Behinderung. „fragen, forschen, finden“. Jahresbericht 2012. Im Internet: http://www.rodtegg.ch/files/pdf/downloads/jahresbericht-2012.pd (Stand: 10.4.2014)
  • 48 Klimont L. Principles of Bobath neuro-developmental therapy in cerebral palsy. Orthop Traumatol Rehabil 2001; 3: 527-530
  • 49 Ehwald W, Hofer A. Das Affolter-Modell. Forschungsergebnisse – Entwicklungsmodell – Anwendung. In: Fröhlich A, Lamers W, Heinen N, Hrsg. Schwere Behinderung in Praxis und Theorie – ein Blick zurück nach vorn. Düsseldorf: Bundesverband für körper- und mehrfachbehinderte Menschen; 2001: 83-99
  • 50 Limbrock JG. Störungen der Mundmotorik bei Kindern mit infantiler CP. J Neurol Neurochir Psychiatr 2011; 12: 360-366
  • 51 Bumin G, Kayihan H. Effectiveness of two different sensory-integration programmes for children with spastic diplegic cerebral palsy. Disabil Rehabil 2001; 15 : 394-399
  • 52 Frostig M. Bewegungserziehung. Neue Wege der Heilpädagogik. München: Reinhardt; 1999
  • 53 Case-Smith J, DeLuca SC, Stevenson R et al. Multicenter randomized controlled trial of pediatric constraint-induced movement therapy: 6-month follow-up. Am J Occup Ther 2012; 66: 15-23
  • 54 Meyer-Heim A, Ammann-Reiffer C, Schmartz A et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child 2009; 94: 615-620
  • 55 Borggraefe I, Kiwull L, Schaefer JS et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med 2010; 46: 125-131
  • 56 Smania N, Bonetti P, Gandolfi M et al. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil 2011; 90: 137-149
  • 57 Brütsch K, Koenig A, Zimmerli L et al. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J Rehabil Med 2011; 43: 493-499
  • 58 Meyer-Heim A, van Hedel HJ. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and clinical implementation. Semin Pediatr Neurol 2013; 20: 139-145
  • 59 Wille D, Eng K, Holper L et al. Virtual reality-based paediatric interactive therapy system (PITS) for improvement of arm and hand function in children with motor impairment – a pilot study. Dev Neurorehabil 2009; 12: 44-52
  • 60 Lo AC, Guarino PD, Richards LG et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362: 1772-1783
  • 61 Verschuren O, Ada L, Maltais DB et al. Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols. Phys Ther 2011; 91: 1130-1139
  • 62 Tseng S. Systematic review and meta-analysis of the effect of equine assisted activities and therapies on gross motor outcome in children with cerebral palsy. Disabil Rehabil 2013; 35: 89-99
  • 63 Hustad KC, Miles LK. Alignment between augmentative and alternative communication needs and school-based speech-language services provided to young children with cerebral palsy. Early Child Serv (San Diego) 2010; 4: 129-140
  • 64 Ochs G. Die Behandlung der schweren Spastizität. Stuttgart: Thieme; 2004: 6-7
  • 65 Hustedt U. Botulinumtoxin bei spastischen Bewegungsstörungen. Ultraschallgestützte Technik und Anwendung. Marburg: KVM; 2011
  • 66 Heinen F ed. Blue book botulinumtoxin. Bern: Hans Huber; 2008
  • 67 Whelan MA, Delgado MR. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the quality standards subcommittee of the american academy of neurology and the practice committee of the child neurology society. Neurology 2010; 75: 336-344
  • 68 Molnar GE, Alexander MA. Pediatric rehabilitation. Philadelphia: Hanley & Belfus; 1999: 210
  • 69 Walter M, Altermatt S, Furrer C et al. Intrathecal baclofen therapy in children with severe spasticity: outcome and complications. Dev Neurorehabil 2013; [Epub ahead of print]
  • 70 Bolster EA, van Schie PE, Becher JG et al. Long-term effect of selective dorsal rhizotomy on gross motor function in ambulant children with spastic bilateral cerebral palsy, compared with reference centiles. Dev Med Child Neurol 2013; 55: 610-616
  • 71 Grunt S, Becher JG, Vermeulen RJ. Long-term outcome and adverse effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol 2011; 53: 490-498
  • 72 Grunt S. Geh-Orthesen bei Kindern mit Cerebralparese. Pädiatrica 2007; 18: 30-34
  • 73 Kuhnke N, Juenger H, Walther M et al. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy?. Dev Med Child Neurol 2008; 50: 898-903
  • 74 Hanna SE, Rosenbaum PL, Bartlett DJ et al. Stability and decline in gross motor function among children and youth with cerebral palsy aged 2 to 21 years. Dev Med Child Neurol 2009; 51: 295-302
  • 75 Kirton A, Deveber G, Gunraj C et al. Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: plastic organization and effects of rTMS. Clin Neurophysiol 2010; 121: 1922-1929
  • 76 Novak I, McIntyre S, Morgan C et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol 2013; 55: 885-910