Fortschr Neurol Psychiatr 2014; 82(3): 135-144
DOI: 10.1055/s-0034-1365926
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Die repetitive transkranielle Magnetstimulation in der Behandlung von Handfunktionsstörungen nach Schlaganfall

Repetitive Transcranial Magnetic Stimulation for the Upper Limb Motor Function Improvement after Stroke
J. Lüdemann-Podubecká
,
G. Neumann
,
M. Ponfick
,
K. Bösl
Further Information

Publication History

Publication Date:
10 March 2014 (online)

Zusammenfassung

Ein Schlaganfall verändert Struktur und Funktion des kortikalen motorischen Systems beider Hemisphären. Die repetitive transkranielle Magnetstimulation kann die Erregbarkeit der motorischen Hirnrinde modulieren und sich dadurch positiv auf die Funktion und/oder Funktionserholung des motorischen Defizits nach Schlaganfall auswirken. Anhand einer systematischen Literaturrecherche wurden 33 Placebo-kontrollierte Studien identifiziert, die die Wirkung der repetitiven transkraniellen Magnetstimulation auf die Verbesserung der Handfunktion nach Schlaganfall untersucht haben. Trotz bekannter Limitationen stützte sich die Anwendung der repetitiven transkraniellen Magnetstimulation überwiegend auf das Erklärungsmodell der interhemisphärischen Kompetition innerhalb des motorischen Systems nach Schlaganfall. In einer vergleichenden Darstellung werden Methodik und Effektivität (a) der Inhibition der nicht betroffenen Hemisphäre, (b) der Fazilitierung der betroffenen Hemisphäre und (c) der kombinierten Anwendung der repetitiven transkraniellen Magnetstimulation über beiden Hemisphären zur Behandlung von Handfunktionsstörungen nach Schlaganfall vorgestellt. Probleme und Schwächen der aktuellen Datenlage zur Anwendung der repetitiven transkraniellen Magnetstimulation in der Rehabilitation nach Schlaganfall werden erörtert und mögliche künftige Schwerpunkte der klinischen Forschung zur Hirnstimulation diskutiert.

Abstract

Stroke induces structural and functional changes within the cortical motor network of both hemispheres. Repetitive transcranial magnetic stimulation modulates the excitability of the motor cortex and thereby may facilitate motor function and/or recovery of motor function after stroke. Based on a systematic literature search we identified 33 placebo-controlled trials which examined the effectiveness of repetitive transcranial magnetic stimulation in the treatment of impaired hand function following stroke. Despite limitations, the majority of the studies referred to the interhemispheric competition model after stroke to apply repetitive transcranial magnetic stimulation. In a comparative approach, methodology and effectiveness of (a) inhibition of the unaffected hemisphere, (b) facilitation of the affected hemisphere and (c) combined application of repetitive transcranial magnetic stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Problems and limitations of repetitive transcranial magnetic stimulation in stroke rehabilitation are discussed and visions for future clinical research are presented.

Ergänzendes Material

 
  • Literatur

  • 1 Kolominsky-Rabas PL, Weber M, Gefeller O et al. Epidemiology of ischemic stroke subtypes according to the TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke 2001; 32: 2735-2740
  • 2 Taylor TN, Davis PH, Torner JC et al. Lifetime cost of stroke in the United States. Stroke 1996; 27: 1459-1466
  • 3 Kwakkel G, Kollen BJ, Wagenaar RC. Long-term effects of intensity of upper and lower limb training following stroke: a randomised trial. Journal of Neurology, Neurosurgery & Psychiatry 2002; 72: 473-479
  • 4 Lai SM, Studenski S, Duncan PW et al. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002; 33: 1840-1844
  • 5 Lang N, Siebner HR. Repetitive transkranielle Magnetstimulation. In: Siebner HR, Ziemann U. Das rTMS Buch.. Heidelberg: Springer Medizin Verlag; 2007: 499-513
  • 6 Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134: 1264-1276
  • 7 Grefkes C, Ward NS. Cortical Reorganization After Stroke: How Much and How Functional?. Neuroscientist 2013; [Epub ahead of print]
  • 8 Rehme AK, Eickhoff SB, Wang LE et al. Dynamic causal modelling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 2011; 55: 1147-1158
  • 9 Rehme AK, Fink GR, von Cramon DY et al. The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cerebral Cortex 2011; 21: 756-768
  • 10 Rehme AK, Eickhoff SB, Rottschy C et al. Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. NeuroImage 2012; 59: 2771-2782
  • 11 Nowak DA, Bösl K, Podubeckà J et al. Noninvasive brain stimulation and motor recovery after stroke. Restorative Neurology and Neuroscience 2010; 28: 531-544
  • 12 Grefkes C, Fink GR. Disruption of motor network connectivity post-stroke and its noninvasive neuromodulation. Current Opinion in Neurology 2012; 25: 670-675
  • 13 Carter AR, Patel KR, Astafiev SV et al. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabilitation and Neural Repair 2012; 26: 71-79
  • 14 Park CH, Chang WH, Ohn SH et al. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011; 42: 1357-1362
  • 15 Wang L, Yu C, Chen H et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 2010; 133: 1224-1238
  • 16 Bestmann S, Swayne O, Blankenburg F et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. The Journal of Neuroscience 2010; 30: 11926-11937
  • 17 Edwardson MA, Lucas TH et al. New modalities of brain stimulation for stroke rehabilitation. Experimental Brain Research 2013; 224: 335-358
  • 18 Bestmann S, Feredoes E. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Annals of the New York Academy of Science 2013; 1296: 11-30
  • 19 Bestmann S, Ruff CC, Blankenburg F et al. Mapping causal interregional influences with concurrent TMS-fMRI. Experimental Brain Research 2008; 191: 383-402
  • 20 Bestmann S, Baudewig J, Siebner HR et al. Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. The European journal of neuroscience 2004; 19: 1950-1962
  • 21 Bestmann S, Baudewig J, Siebner HR et al. BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. NeuroImage 2005; 28: 22-29
  • 22 Strafella AP, Paus T, Barrett J et al. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. The Jounal of Neuroscience 2001; 21: RC157
  • 23 Bestmann S, Swayne O, Blankenburg F et al. Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cerebral cortex 2008; 18: 1281-1291
  • 24 Blankenburg F, Ruff CC, Bestmann S et al. Interhemispheric effect of parietal TMS on somatosensory response confirmed directly with concurrent TMS-fMRI. The Jounal of Neuroscience 2008; 28: 13202-13208
  • 25 Wu SW, Shahana N, Huddleston DA et al. Effects of 30Hz θ burst transcranial magnetic stimulation on the primary motor cortex. Journal of Neuroscience Methods 2012; 208: 161-164
  • 26 Vallence AM, Kurylowicz L, Ridding MC. A comparison of neuroplastic responses to non-invasive brain stimulation protocols and motor learning in healthy adults. Neuroscience Letters 2013; 549: 151-156
  • 27 Doeltgen SH, Ridding MC. Modulation of cortical motor networks following primed θ burst transcranial magnetic stimulation. Experimental Brain Research 2011; 215: 199-206
  • 28 Player MJ, Taylor JL, Alonzo A et al. Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clinical Neurophysiology 2012; 123: 2220-2226
  • 29 Iezzi E, Suppa A, Conte A et al. Short-term and long-term plasticity interaction in human primary motor cortex. The European journal of neuroscience 2011; 33: 1908-1915
  • 30 Koeneke S, Jäncke L. Motorisches Lernen. In: Siebner HR, Ziemann U. Das rTMS Buch.. Heidelberg: Springer Medizin Verlag; 2007: 46-56
  • 31 Lee M, Kim SE, Kim WS et al. Interaction of motor training and intermittent theta burst stimulation in modulating motor cortical plasticity: influence of BDNF Val66Met polymorphism. PLoS One 2013; 8: e57690
  • 32 Juenger H, Kuhnke N, Braun C et al. Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study. Developmental Medicine & Child Neurology 2013; 55: 941-951
  • 33 Mansur CG, Fregni F, Boggio PS et al. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 2005; 64: 1802-1804
  • 34 Takeuchi N, Chuma T, Matsuo Y et al. Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke 2005; 36: 2681-2686
  • 35 Fregni F, Boggio PS, Valle AC et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006; 37: 2115-2122
  • 36 Liepert J, Zittel S, Weiller C. Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial. Restorative neurology and neuroscience 2007; 25: 461-465
  • 37 Dafotakis M, Grefkes C, Eickhoff SB et al. Effects of rTMS on grip force control following subcortical stroke. Experimental neurology 2008; 211: 407-412
  • 38 Kirton A, Chen R, Friefeld S et al. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial. Lancet neurology 2008; 7: 507-513
  • 39 Nowak DA, Grefkes C, Dafotakis M et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Archives of neurology 2008; 65: 741-747
  • 40 Takeuchi N, Tada T, Toshima M et al. Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranical magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. Journal of rehabilitation medicine 2008; 40: 298-303
  • 41 Grefkes C, Nowak DA, Wang LE et al. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage 2010; 50: 233-342
  • 42 Meehan SK, Dao E, Linsdell MA et al. Continuous theta burst stimulation over the contralesional sensory and motor cortex enhances motor learning post-stroke. Neuroscience Letters 2011; 500: 26-30
  • 43 Theilig S, Podubecka J, Bösl K et al. Functional neuromuscular stimulation to improve severe hand dysfunction after stroke: does inhibitory rTMS enhance therapeutic efficiency?. Experimental neurology 2011; 230: 149-155
  • 44 Avenanti A, Coccia M, Ladavas E et al. Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke: a randomized trial. Neurology 2012; 78: 256-264
  • 45 Conforto AB, Anjos SM, Saposnik G et al. Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. Journal of neurology 2012; 259: 1399-1405
  • 46 Seniów J, Bilik M, Lesniak M et al. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabilitation and neural repair 2012; 26: 1072-1079
  • 47 Tretriluxana J, Kantak S, Tretriluxana S et al. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke. Disability and rehabilitation. Assistive technology 2013; 8: 121-124
  • 48 Kim YH, You SH, Ko MH et al. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke 2006; 37: 1471-1476
  • 49 Malcolm MP, Triggs WJ, Light KE et al. Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial. American journal of physical medicine & rehabilitation 2007; 86: 707-715
  • 50 Pomeroy VM, Cloud G, Tallis RC et al. Transcranial magnetic stimulation and muscle contraction to enhance stroke recovery: a randomized proof-of-principle and feasibility investigation. Neurorehabilitation and neural repair 2007; 21: 509-517
  • 51 Ameli M, Grefkes C, Kemper F et al. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of neurology 2009; 66: 298-309
  • 52 Chang WH, Kim YH, Bang OY et al. Long-term effects of rTMS on motor recovery in patients after subacute stroke. Journal of rehabilitation medicine 2010; 42: 758-764
  • 53 Khedr EM, Etraby AE, Hemeda M et al. Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta neurologica Scandinavica 2010; 121: 30-37
  • 54 Chang WH, Kim YH, Yoo WK et al. rTMS with motor training modulates cortico-basal ganglia-thalamocortical circuits in stroke patients. Restorative neurology and neuroscience 2012; 30: 179-189
  • 55 Hsu YF, Huang YZ, Lin YY et al. Intermittent theta burst stimulation over ipsilesional primary motor cortex of subacute ischemic stroke patients: A pilot study. Brain Stimulation 2013; 6: 166-174
  • 56 Talelli P, Greenwood RJ, Rothwell JC. Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke. Clinical neurophysiology 2007; 118: 333-342
  • 57 Khedr EM, Abdel-Fadeil MR, Farghali A et al. Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. European journal of neurology 2009; 16: 1323-1330
  • 58 Ackerley SJ, Stinear CM, Barber PA et al. Combining theta burst stimulation with training after subcortical stroke. Stroke 2010; 41: 1568-1572
  • 59 Emara TH, Moustafa RR, Elnahas NM et al. Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in motor function and disability after ischaemic stroke. European journal of neurology 2010; 17: 1203-1209
  • 60 Sasaki N, Mizutani S, Kakuda W et al. Comparison of the Effects of High- and Low-frequency Repetitive Transcranial Magnetic Stimulation on Upper Limb Hemiparesis in the Early Phase of Stroke. Journal of stroke and cerebrovascular diseases 2013; 22: 413-418
  • 61 Talelli P, Wallace A, Dileone M et al. Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients. Neurorehabilitation and neural repair 2012; 26: 976-987
  • 62 Málly J, Dinya E. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain research bulletin 2008; 76: 388-395
  • 63 Takeuchi N, Tada T, Toshima M et al. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. Journal of rehabilitation medicine 2009; 41: 1049-1054
  • 64 Takeuchi N, Tada T, Matsuo Y et al. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke. Neurorehabilitation and neural repair 2012; 26: 988-998
  • 65 Sung WH, Wang CP, Chou CL et al. Efficacy of Coupling Inhibitory and Facilitatory Repetitive Transcranial Magnetic Stimulation to Enhance Motor Recovery in Hemiplegic Stroke Patients. Stroke 2013; 44: 1375-1382
  • 66 Hamada M, Strigaro G, Murase N et al. Cerebellar modulation of human associative plasticity. The Journal of physiology 2012; 590: 2365-2374
  • 67 Gamboa OL, Antal A, Laczo B et al. Impact of repetitive theta burst stimulation on motor cortex excitability. Brain stimulation 2011; 4: 145-151