Sportverletz Sportschaden 2014; 28(03): 125-131
DOI: 10.1055/s-0034-1366545
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Hat die Aktivierung der Muskulatur durch Ganzkörpervibration einen Effekt auf die Knochendichte von postmenopausalen Frauen? Eine systematische Literaturübersicht

Does Muscle Activation during Whole-Body Vibration Induce Bone Density Improvement in Postmenopausal Women? – A Systematic Review
L.-R. Calendo
1   Fachhochschule Südschweiz, Departement Graubünden, Landquart, Schweiz
,
J. Taeymans
2   Berner Fachhochschule, Fachbereich Gesundheit, Disziplin Physiotherapie
3   Vrije Universiteit Brussel, Labor für menschliche Biometrie und Biomechanik, Brüssel, Belgien
,
S. Rogan
2   Berner Fachhochschule, Fachbereich Gesundheit, Disziplin Physiotherapie
4   Akademie für Physiotherapie und integrative Trainingslehre, Grenzach-Wyhlen, Deutschland
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2014 (online)

Zusammenfassung

Hintergrund: Ganzkörpervibrationstraining (GKV) stimuliert durch mechanische Schwingungen die Muskulatur. Dies führt zu einer erhöhten muskulären Aktivität und zu Verformung am Knochen, was zu einer Remodullierung der Knochen und Erhöhung der Dichte führt. Das Ziel dieser systematischen Literaturübersicht war, ob eine Muskelaktivierung bzw. Muskelkräftigung hervorgerufen durch GKV einen Effekt auf die Knochendichte von postmenopausalen Frauen hat.

Methoden: Diese systematische Literaturübersichtsarbeit wurde nach den Vorgaben des PRISMA-Statements für Metaanalysen und systematische Übersichtsarbeiten durchgeführt. Die Literatur wurde in verschiedenen elektronischen Datenbanken (PubMed, Cinahl) und Google Scholar gesucht. Die Suche, nach geeigneter Literatur, fand zwischen Juni 2012 und August 2013 statt. Die Qualität der Arbeiten wurden mittels dem „Cochrane-Risk-of-Bias-Instrument“ von zwei unabhängigen Personen (LC, SR) beurteilt.

Ergebnisse: Es wurden 246 Studien gesichtet. In die Analyse wurden 3 Studien mit vertikaler und 2 Studien mit seitenalternierender GKV eingeschlossen, mit insgesamt 368 Probanden mit einer Streuung von 60,7 – 79,6 Jahren. Von diesen trainierten 132 auf vertikal vibrierenden (VGKV) und 67 auf seitenalterierenden (SGKV) vibrierenden Platten. Die eingeschlossenen Studien wiesen ein mittleres bis hohes Risiko für Verzerrung auf. Die Behandlungsparameter waren sehr heterogen. Die Frequenzen wurden für VKGV zwischen 12,0 – 40,0 Hz und für SGKV mit 12,5 Hz gewählt und mit einer breit gestreuten Amplitude zwischen 1,7 und 12,0 mm bei einer vertikalen Beschleunigung von 0,1 – 10,0 g.

Schlussfolgerung: Diese systematische Literaturstudie zeigte signifikante Einflüsse nach VGKV mit Frequenzen von 30,0 – 40,0 Hz (3x/Woche, jeweils 15 Minuten Trainingszeit) auf die isometrische Maxmalkraft (IMK) von 15,1 – 16,5 % und der dynamischen Maximalkraft (DMK) von 7,9 – 16,5 % sowie der SKGV mit einer Frequenz von 12,5 Hz (3x/Woche, jeweils 15 Minuten Trainingszeit) auf die IMK von 26,6 %. Daraus resultierte eine Zunahme der Knochendichte in der LWS von 0,5 – 0,7 % und der Hüfte von 0,8 – 0,9 % bei postmenopausalen Frauen. Diese klinisch signifikanten Resultate müssen zukünftig mittels qualitativ hochwertig randomisiert-kontrollierten Studien bestätigt und nach dem CONSORT Statement rapportiert werden.

Abstract

Background: Whole body vibration training (WBV) stimulates muscles by mechanical vibrations. The resulting muscle activity and bone deformation may provoke an increase in bone density. The aim of this systematic review was to evaluate whether muscle activation and muscle strengthening caused by vibration training has an effect on bone density in postmenopausal women.

Methods: This systematic review was conducted according to the guidelines of the PRISMA statement for meta-analyses and systematic reviews. The literature search was conducted in several electronic databases (PubMed und CINAHL) and Google Scholar. The literature search was conducted between June 2012 and August 2013. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool by two independent persons.

Results: A total of 246 studies was found. In this present analysis three studies with vertical and two studies with side-alternating WBV were included, totalling 368 participants with an age range between 60.7 and 79.6 years. From those 132 participants trained on vertically while 67 participants trained on side-alternating WBV engines. The included study shows a moderate to high risk of bias. The selected frequencies ranged from 12.0 Hz to 40.0 Hz for vertical WBV and 12.5 Hz for side-alternating WBV. The amplitude ranged between 1.7 and 12.0 mm with an acceleration from 0.1 to 10.0 g.

Conclusion: This systematic review showed significant influences on the isometric maximal voluntary contraction (IMVC) between 15.1 and 16.5 % and on dynamic maximal strength (DMS) between 7.9 to 16.5 % after vertically WBV (frequencies: 30.0 to 40.0 Hz; 3 sessions per week; 15 minutes per session) and on IMV with 26.6 % (frequency: 12.5 Hz; 3 sessions per week; 15 minutes per session). This increased muscle activity resulted in an improved bone density in the lumbar spine between 0.5 % to 0.7 % and the hip between 0.8 % to 0.9 % in postmenopausal women. These clinically significant findings should be confirmed by a large high-quality randomised controlled trial and reported following the CONSORT Statement guidelines.

 
  • Literatur

  • 1 Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. Journal of bone and mineral metabolism 2000; 18: 305-316
  • 2 Frost HM. From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications. The Anatomical record 2001; 262: 398-419
  • 3 Augustin M. Anatomie, Physiologie: Lehrbuch für Physiotherapeuten, Masseure, medizinische Bademeister und Sportwissenschaftler. 3. Aufl. München: Elsevier, Urban & Fischer; 2010
  • 4 Zerwekh JE, Ruml LA, Gottschalk F et al. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 1998; 13: 1594-1601
  • 5 Demirbag D, Ozdemir F, Kokino S et al. The relationship between bone mineral density and immobilization duration in hemiplegic limbs. Annals of nuclear medicine 2005; 19: 695-700
  • 6 Ducher G, Courteix D, Meme S et al. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players. Bone 2005; 37: 457-466
  • 7 Runge M, Felsenberg D. Bewegungsprogramm zur Prävention von Stürzen und Frakturen. arthritis + rheuma 2006; 26: 239-247
  • 8 Schoenau E. Der Muskel als Knochenpilot. Ernährungsforum. 2002 Bundesamt Milchforschung Kiel
  • 9 Schoenau E. From mechanostat theory to development of the "Functional Muscle-Bone-Unit". Journal of musculoskeletal & neuronal interactions 2005; 5: 232-238
  • 10 Rittweger J, Beller G, Armbrecht G et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 2010; 46: 137-147
  • 11 Ritzmann R, Kramer A, Gruber M et al. EMG activity during whole body vibration: motion artifacts or stretch reflexes?. European journal of applied physiology 2010; 110: 143-151
  • 12 Kaspar D, Seidl W, Neidlinger-Wilke C et al. Dynamic cell stretching increases human osteoblast proliferation and CICP synthesis but decreases osteocalcin synthesis and alkaline phosphatase activity. Journal of biomechanics 2000; 33: 45-51
  • 13 Tanaka SM, Li J, Duncan RL et al. Effects of broad frequency vibration on cultured osteoblasts. Journal of biomechanics 2003; 36: 73-80
  • 14 Wozniak M, Fausto A, Carron CP et al. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of alphavbeta3-integrin expression. Journal of bone and mineral research 2000; 15: 1731-1745
  • 15 Yellowley CE, Li Z, Zhou Z et al. Functional gap junctions between osteocytic and osteoblastic cells. Journal of bone and mineral research 2000; 15: 209-217
  • 16 Rogan S, Radlinger L, Schmid S et al. Skilling up for training: a feasibility study investigating acute effects of stochastic resonance whole-body vibration on postural control of older adults. Ageing Research 2012; 3: e5
  • 17 Rogan S, Hilfiker R. Training methods – increase muscle strength due to whole-body vibration – force with Hz. Sportverletzung Sportschaden 2012; 26: 185-187
  • 18 Gomez-Cabello A, Gonzalez-Aguero A, Ara I et al. Effects of a short-term whole body vibration intervention on physical fitness in elderly people. Maturitas 2013; DOI: 10.1016/j.maturitas.2012.12.008.
  • 19 Milanese C, Piscitelli F, Zenti MG et al. Ten-week Whole-body Vibration Training Improves Body Composition and Muscle Strength in Obese Women. Int J Med Sci 2013; 10: 307-311
  • 20 Rees S, Murphy A, Watsford M. Effects of vibration exercise on muscle performance and mobility in an older population. Journal of aging and physical activity 2007; 15: 367-381
  • 21 Lam TP, Ng BK, Cheung LW et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2013; 24: 1623-1636
  • 22 Ligouri GC, Shoepe TC, Almstedt HC. Whole Body Vibration Training is Osteogenic at the Spine in College-Age Men and Women. Journal of human kinetics 2012; 31: 55-68
  • 23 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj-Brit Med J 2009; 339
  • 24 Armstrong EC. The well-built clinical question: the key to finding the best evidence efficiently. WMJ 1999; 98: 25-28
  • 25 Higgins J, Green S. Cochrane handbook for systematic reviews of interventions. Wesr Sussex: John Wiley & Sons Ltd 2008
  • 26 Beck B, Norling T. The Effect of 8 Mos of Twice-Weekly Low- or Higher Intensity Whole Body Vibration on Risk Factors for Postmenopausal Hip Fracture. Am J Phys Med Rehabil 2010; 89: 997-1009
  • 27 Russo CR, Lauretani F, Bandinelli S et al. High-frequency vibration training increases muscle power in postmenopausal women. Archives of physical medicine and rehabilitation 2003; 84: 1854-1857
  • 28 Verschueren SM, Bogaerts A, Delecluse C et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: a 6-month randomized, controlled trial. Journal of bone and mineral research 2011; 26: 42-49
  • 29 Verschueren SM, Roelants M, Delecluse C et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. Journal of bone and mineral research 2004; 19: 352-359
  • 30 Von Stengel S, Kemmler W, Bebenek M et al. Effects of whole-body vibration training on different devices on bone mineral density. Medicine and science in sports and exercise 2011; 43: 1071-1079
  • 31 Pildal J, Chan AW, Hrobjartsson A et al. Comparison of descriptions of allocation concealment in trial protocols and the published reports: cohort study. Bmj 2005; 330: 1049
  • 32 Rogan S, Hilfiker R, Schmid S et al. Stochastic resonance whole-body vibration training for chair rising performance on untrained elderly: a pilot study. Archives of gerontology and geriatrics 2012; 55: 468-473
  • 33 von Stengel S, Kemmler W, Engelke K et al. Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women. Osteoporosis international 2011; 22: 317-325
  • 34 Rogan S, Schmidtbleicher D, Radlinger L. Immediate effects after stochastic resonance whole-body vibration on physical performance on frail elderly for skilling-up training: a blind cross-over randomised pilot study. Aging Clin Exp Res 2014; DOI: 10.1007/s40520-014-0212-4.
  • 35 Rubin C, Recker R, Cullen D et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 2004; 19: 343-351
  • 36 Wood L, Egger M, Gluud LL et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. Bmj 2008; 336: 601-605
  • 37 Drouin JM, Valovich-mcLeod TC, Shultz SJ et al. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. European journal of applied physiology 2004; 91: 22-29
  • 38 Toonstra J, Mattacola CG. Test-retest Reliability and Validity of Isometric Knee Flexion and Extension Measurement Using Three Methods of Assessing Muscle Strength. Journal of sport rehabilitation 2013; Sept 4 [Epub ahead of print]
  • 39 Merriman H, Jackson K. The effects of whole-body vibration training in aging adults: a systematic review. Journal of geriatric physical therapy 2009; 32: 134-145
  • 40 Rössler O, Marsch S, Abendroth K et al. Wirkung mechanischer stimuli mittels oszillierender Intervention durch Galilei 2000 auf Muskelkraft und Knochendichte. In: Friedrich Schiller Universität Jena: Bereich Sportmedizin; 2000
  • 41 Zha DS, Zhu QA, Pei WW et al. Does whole-body vibration with alternative tilting increase bone mineral density and change bone metabolism in senior people?. Aging clinical and experimental research 2012; 24: 28-36
  • 42 Gusi N, Raimundo A, Leal A. Low-frequency vibratory exercise reduces the risk of bone fracture more than walking: a randomized controlled trial. BMC musculoskeletal disorders 2006; 7: 92
  • 43 von Stengel S, Kemmler W, Mayer S et al. Effect of whole body vibration exercise on osteoporotic risk factors. Dtsch Med Wochenschr 2009; 134: 1511-1516
  • 44 Herren K, Rogan S, Hilfiker R et al. Vibrationen mit therapeutischen Effekten. PhysioActive 2009; 2: 39-44
  • 45 Hazell TJ, Jakobi JM, Kenno KA. The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 2007; 32: 1156-1163
  • 46 Mikhael M, Orr R, Fiatarone Singh MA. The effect of whole body vibration exposure on muscle or bone morphology and function in older adults: a systematic review of the literature. Maturitas 2010; 66: 150-157