Rofo 2014; 186(9): 847-859
DOI: 10.1055/s-0034-1366661
Review
© Georg Thieme Verlag KG Stuttgart · New York

High temporal and high spatial resolution MR angiography (4D-MRA)

Zeitlich und räumlich hochaufgelöste MR Angiografie („4D-MRA“)
D. R. Hadizadeh
,
C. Marx
,
J. Gieseke
,
H. H. Schild
,
W. A. Willinek
Weitere Informationen

Publikationsverlauf

06. Januar 2014

08. Mai 2014

Publikationsdatum:
23. Juni 2014 (online)

Abstract

In the first decade of the twenty-first century, whole-body magnetic resonance scanners with high field strengths (and thus potentially better signal-to-noise ratios) were developed. At the same time, parallel imaging and “echo-sharing” techniques were refined to allow for increasingly high spatial and temporal resolution in dynamic magnetic resonance angiography (“time-resolved” = TR-MRA). This technological progress facilitated tracking the passage of intra-venously administered contrast agent boluses as well as the acquisition of volume data sets at high image refresh rates (“4D-MRA”). This opened doors for many new applications in non-invasive vascular imaging, including simultaneous anatomic and functional analysis of many vascular pathologies including arterio-venous malformations. Different methods were established to acquire 4D-MRA using various strategies to acquire k-space trajectories over time in order to optimize imaging according to clinical needs. These include “keyhole”-based techniques (e. g. 4D-TRAK), TRICKS – both with and without projection – and HYPR-reconstruction, TREAT, and TWIST. Some of these techniques were first introduced in the 1980 s and 1990 s, were later enhanced and modified, and finally implemented in the products of major vendors. In the last decade, a large number of studies on the clinical applications of TR-MRA was published. This manuscript provides an overview of the development of TR-MRA methods and the 4D-MRA techniques as they are currently used in the diagnosis, treatment and follow-up of vascular diseases in various parts of the body.

Key statements

• 4D-MRA, which differs according to manufacturer, generates high temporal and spatial resolution MRA volume data sets.

Key differences in 4D-MRA techniques concern the sequence of the acquisition of k-space portions.

• Central k-space portions define image contrast and are thus repetitively scanned with 4D-MRA.

• Numerous clinical applications of 4D-MRA are already documented in the literature.

Citation Format:

• Hadizadeh DR., Marx C, Gieseke J et al. High temporal and high spatial resolution MR angiography (4D-MRA). Fortschr Röntgenstr 2014; 186: 847 – 859

Zusammenfassung

Im ersten Jahrzehnt des 21. Jahrhunderts wurden Ganzkörper-Magnetresonanztomografen mit höheren Feldstärken (und damit potenziell besserem Signal-zu-Rausch-Verhältnis) entwickelt. Dies und die nahezu zeitgleiche Entwicklung bzw. Verfeinerung von Techniken wie der parallelen Bildgebung und „Echo-sharing“ erlaubten ein zunehmend höheres räumliches und zeitliches Auflösungsvermögen in der dynamischen Magnetresonanzangiografie („Time-resolved“ = TR-MRA). Somit konnten erstmals sowohl die Passage eines Kontrastmittelbolus mit einer angemessenen räumlichen Auflösung verfolgt als auch Volumendatensätze mit hohen Bildauffrischungsraten erzeugt werden („4D-MRA“). Damit eröffneten sich neue Optionen der nicht invasiven Gefäßdiagnostik, wie beispielsweise die gleichzeitige anatomische und funktionelle Analyse von Gefäßmalformationen. Es wurden zahlreiche unterschiedliche Methoden eingeführt, bei denen die Akquisitionen der k-Raum-Trajektorien strategisch unterschiedlich über den Akquisitionszeitraum verteilt wurden, um optimale klinische Ergebnisse zu erlangen. Dazu zählten beispielsweise Verfahren wie „Keyhole“-basierte Techniken (z. B. 4D-TRAK), TRICKS mit und ohne Projektions- und HYPR-Rekonstruktion, TREAT und TWIST. Einige dieser Techniken wurden bereits in den 80er- und 90er-Jahren vorgestellt, in der Folge weiterentwickelt und modifiziert und schließlich in handelsübliche MR-Tomografen der verschiedenen Hersteller implementiert. In der letzten Dekade wurden schließlich zahlreiche Studien zu klinischen Anwendungen der TR-MRA vorgestellt. Dieses Manuskript bietet eine Übersicht über die Entwicklung der TR-MRA-Verfahren und die gegenwärtig eingesetzten 4D-MRA-Techniken wie sie derzeit Ihren klinischen Einsatz bei der Diagnose, Behandlung und bei Verlaufsuntersuchungen von Gefäßerkrankungen in unterschiedlichen Körperregionen finden.

Es wurden zahlreiche unterschiedliche Methoden eingeführt, bei denen die Akquisitionen der k-Raum-Trajektorien strategisch unterschiedlich über den Akquisitionszeitraum verteilt wurden, um optimale klinische Ergebnisse zu erlangen. Dazu zählten beispielsweise Verfahren wie „Keyhole“-basierte Techniken (z. B. 4D-TRAK), TRICKS mit und ohne Projektions- und HYPR-Rekonstruktion, TREAT und TWIST. Einige dieser Techniken wurden bereits in den 80er und 90er Jahren vorgestellt, in der Folge weiterentwickelt und modifiziert und schließlich in handelsübliche MR-Tomografen der verschiedenen Hersteller implementiert. In der letzten Dekade wurden schließlich zahlreiche Studien zu klinischen Anwendungen der TR-MRA vorgestellt. Dieses Manuskript bietet eine Übersicht über die Entwicklung der TR-MRA-Verfahren und die gegenwärtig eingesetzten 4D-MRA Techniken wie sie derzeit Ihren klinischen Einsatz bei der Diagnose, Behandlung und bei Verlaufsuntersuchungen von Gefäßerkrankungen in unterschiedlichen Körperregionen finden.

Deutscher Artikel/German Article

 
  • Literatur

  • 1 Prince MR, Yucel EK, Kaufman JA et al. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 1993; 3: 877-881
  • 2 Jones RA, Haraldseth O, Muller TB et al. K-space substitution: a novel dynamic imaging technique. Magn Reson Med 1993; 29: 830-834
  • 3 van Vaals JJ, Brummer ME, Dixon WT et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671-675
  • 4 Pruessmann KP, Weiger M, Scheidegger MB et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962
  • 5 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591-603
  • 6 Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology 2008; 248: 20-43
  • 7 Cornfeld D, Mojibian H. Clinical uses of time-resolved imaging in the body and peripheral vascular system. Am J Roentgenol 2009; 193: W546-W557
  • 8 Jeong HJ, Vakil P, Sheehan JJ et al. Time-resolved magnetic resonance angiography: Evaluation of intrapulmonary circulation parameters in pulmonary arterial hypertension. J Magn Reson Imaging 2011; 33: 225-231
  • 9 Risse F, Eichinger M, Kauczor HU et al. Improved visualization of delayed perfusion in lung MRI. Eur J Radiol 2011; 77: 105-110
  • 10 Schoenberg SO, Bock M, Floemer F et al. High-resolution pulmonary arterio- and venography using multiple-bolus multiphase 3D-Gd-mRA. J Magn Reson Imaging 1999; 10: 339-346
  • 11 Sergiacomi G, Bolacchi F, Cadioli M et al. Combined pulmonary fibrosis and emphysema: 3D time-resolved MR angiographic evaluation of pulmonary arterial mean transit time and time to peak enhancement. Radiology 2010; 254: 601-608
  • 12 Tomasian A, Krishnam MS, Lohan DG et al. Adult Tetralogy of Fallot: quantitative assessment of pulmonary perfusion with time-resolved three dimensional magnetic resonance angiography. Invest Radiol 2009; 44: 31-37
  • 13 Tuite DJ, Francois C, Dill K et al. Diagnosis and characterization of pulmonary sequestration using dynamic time-resolved magnetic resonance angiography. Clin Radiol 2008; 63: 913-917
  • 14 Cai Z, Stolpen A, Sharafuddin MJ et al. Bolus characteristics based on Magnetic Resonance Angiography. Biomed Eng Online 2006; 5: 53
  • 15 Kreitner KF, Kunz RP, Weschler C et al. [Systematic analysis of the geometry of a defined contrast medium bolus – implications for contrast enhanced 3D MR-angiography of thoracic vessels]. Fortschr Röntgenstr 2005; 177: 646-654
  • 16 Wang Y, Johnston DL, Breen JF et al. Dynamic MR digital subtraction angiography using contrast enhancement, fast data acquisition, and complex subtraction. Magn Reson Med 1996; 36: 551-556
  • 17 Finn JP, Baskaran V, Carr JC et al. Thorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial results. Radiology 2002; 224: 896-904
  • 18 Frayne R, Grist TM, Korosec FR et al. MR angiography with three-dimensional MR digital subtraction angiography. Top Magn Reson Imaging 1996; 8: 366-388
  • 19 Weiger M, Pruessmann KP, Kassner A et al. Contrast-enhanced 3D MRA using SENSE. J Magn Reson Imaging 2000; 12: 671-677
  • 20 Riederer SJ, Tasciyan T, Farzaneh F et al. MR fluoroscopy: technical feasibility. Magn Reson Med 1988; 8: 1-15
  • 21 Spielman DM, Pauly JM, Meyer CH. Magnetic resonance fluoroscopy using spirals with variable sampling densities. Magn Reson Med 1995; 34: 388-394
  • 22 Nael K, Michaely HJ, Lee M et al. Dynamic pulmonary perfusion and flow quantification with MR imaging, 3.0T vs. 1.5T: initial results. J Magn Reson Imaging 2006; 24: 333-339
  • 23 Ziyeh S, Strecker R, Berlis A et al. Dynamic 3D MR angiography of intra- and extracranial vascular malformations at 3T: a technical note. Am J Neuroradiol 2005; 26: 630-634
  • 24 Kukuk GM, Hadizadeh DR, Gieseke J et al. Highly undersampled supraaortic MRA at 3.0 T: initial results with parallel imaging in two directions using a 16-channel neurovascular coil and parallel imaging factors up to 16. Magn Reson Imaging 2010; 28: 1311-1318
  • 25 Willinek WA, Gieseke J, Conrad R et al. Randomly segmented central k-space ordering in high-spatial-resolution contrast-enhanced MR angiography of the supraaortic arteries: initial experience. Radiology 2002; 225: 583-588
  • 26 Hadizadeh DR, von Falkenhausen M, Gieseke J et al. Cerebral arteriovenous malformation: Spetzler-Martin classification at subsecond-temporal-resolution four-dimensional MR angiography compared with that at DSA. Radiology 2008; 246: 205-213
  • 27 Willinek WA, Hadizadeh DR, von Falkenhausen M et al. 4D time-resolved MR angiography with keyhole (4D-TRAK): more than 60 times accelerated MRA using a combination of CENTRA, keyhole, and SENSE at 3.0T. J Magn Reson Imaging 2008; 27: 1455-1460
  • 28 Hadizadeh DR, Gieseke J, Beck G et al. View-sharing in keyhole imaging: Partially compressed central k-space acquisition in time-resolved MRA at 3.0T. Eur J Radiol 2011; 80: 400-406
  • 29 Beranek-Chiu J, Froehlich JM, Wentz KU et al. Improved vessel delineation in keyhole time-resolved contrast-enhanced MR angiography using a gadolinium doped flush. J Magn Reson Imaging 2009; 29: 1147-1153
  • 30 Boussel L, Cernicanu A, Geerts L et al. 4D time-resolved magnetic resonance angiography for noninvasive assessment of pulmonary arteriovenous malformations patency. J Magn Reson Imaging 2010; 32: 1110-1116
  • 31 Frydrychowicz A, Bley TA, Zadeh ZA et al. Image analysis in time-resolved large field of view 3D MR-angiography at 3T. J Magn Reson Imaging 2008; 28: 1116-1124
  • 32 Horie T, Honda M, Okumura Y et al. Basic examination of CEMRA with 4D time-resolved angiography using keyhole (4D-TRAK) in 3T pelvic region. Nippon Hoshasen Gijutsu Gakkai Zasshi 2008; 64: 1532-1539
  • 33 Itou D, Nagasaka T, Yanagawa I et al. Use of the keyhole technique for 3.0T MRI dynamic imaging. Nippon Hoshasen Gijutsu Gakkai Zasshi 2008; 64: 1562-1567
  • 34 Kukuk GM, Hadizadeh DR, Bostrom A et al. Cerebral arteriovenous malformations at 3.0 T: intraindividual comparative study of 4D-MRA in combination with selective arterial spin labeling and digital subtraction angiography. Invest Radiol 2010; 45: 126-132
  • 35 Langer S, Kramer N, Mommertz G et al. Unmasking pedal arteries in patients with critical ischemia using time-resolved contrast-enhanced 3D MRA. J Vasc Surg 2009; 49: 1196-1202
  • 36 Nishimura S, Hirai T, Sasao A et al. Evaluation of dural arteriovenous fistulas with 4D contrast-enhanced MR angiography at 3T. Am J Neuroradiol 2010; 31: 80-85
  • 37 Parmar H, Ivancevic MK, Dudek N et al. Dynamic MRA with four-dimensional time-resolved angiography using keyhole at 3 tesla in head and neck vascular lesions. J Neuroophthalmol 2009; 29: 119-127
  • 38 Raoult H, Ferre JC, Morandi X et al. Quality-evaluation scheme for cerebral time-resolved 3D contrast-enhanced MR angiography techniques. Am J Neuroradiol 2010; 31: 1480-1487
  • 39 Reinacher PC, Stracke P, Reinges MH et al. Contrast-enhanced time-resolved 3-D MRA: applications in neurosurgery and interventional neuroradiology. Neuroradiology 2007; 49: S3-S13
  • 40 Ruhl KM, Katoh M, Langer S et al. Time-resolved 3D MR angiography of the foot at 3 T in patients with peripheral arterial disease. Am J Roentgenol 2008; 190: W360-W364
  • 41 Hadizadeh DR, Kukuk GM, Steck DT et al. Noninvasive evaluation of cerebral arteriovenous malformations by 4D-MRA for preoperative planning and postoperative follow-up in 56 patients: comparison with DSA and intraoperative findings. Am J Neuroradiol 2012; 33: 1095-1101
  • 42 Korosec FR, Frayne R, Grist TM et al. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 1996; 36: 345-351
  • 43 Du YP, Parker DL, Davis WL et al. Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J Magn Reson Imaging 1994; 4: 733-741
  • 44 Vigen KK, Peters DC, Grist TM et al. Undersampled projection-reconstruction imaging for time-resolved contrast-enhanced imaging. Magn Reson Med 2000; 43: 170-176
  • 45 Huang Y, Wright GA. Time-resolved MR angiography with limited projections. Magn Reson Med 2007; 58: 316-325
  • 46 Wu Y, Johnson K, Kecskemeti SR et al. Time resolved contrast enhanced intracranial MRA using a single dose delivered as sequential injections and highly constrained projection reconstruction (HYPR CE). Magn Reson Med 2011; 65: 956-963
  • 47 Du J, Carroll TJ, Wagner HJ et al. Time-resolved, undersampled projection reconstruction imaging for high-resolution CE-MRA of the distal runoff vessels. Magn Reson Med 2002; 48: 516-522
  • 48 Ali S, Cashen TA, Carroll TJ et al. Time-resolved spinal MR angiography: initial clinical experience in the evaluation of spinal arteriovenous shunts. Am J Neuroradiol 2007; 28: 1806-1810
  • 49 Andreisek G, Pfammatter T, Goepfert K et al. Peripheral arteries in diabetic patients: standard bolus-chase and time-resolved MR angiography. Radiology 2007; 242: 610-620
  • 50 Archambault E, Gouny P, Hebert T et al. MR angiography of peripheral arterial disease of the distal legs: is time resolved MRA (TRICKS) necessary?. J Radiol 2008; 89: 863-871
  • 51 Dick EA, Burnett C, Anstee A et al. Time-resolved imaging of contrast kinetics three-dimensional (3D) magnetic resonance venography in patients with pelvic congestion syndrome. Br J Radiol 2010; 83: 882-887
  • 52 Du J, Korosec FR, Thornton FJ et al. High-resolution multistation peripheral MR angiography using undersampled projection reconstruction imaging. Magn Reson Med 2004; 52: 204-208
  • 53 Du J, Thornton FJ, Mistretta CA et al. Dynamic MR venography: an intrinsic benefit of time-resolved MR angiography. J Magn Reson Imaging 2006; 24: 922-927
  • 54 Du J, Fain SB, Korosec FR et al. Time-resolved contrast-enhanced carotid imaging using undersampled projection reconstruction acquisition. J Magn Reson Imaging 2007; 25: 1093-1099
  • 55 Du J, Bydder M. High-resolution time-resolved contrast-enhanced MR abdominal and pulmonary angiography using a spiral-TRICKS sequence. Magn Reson Med 2007; 58: 631-635
  • 56 Ersoy H, Zhang H, Prince MR. Peripheral MR angiography. J Cardiovasc Magn Reson 2006; 8: 517-528
  • 57 Ersoy H, Goldhaber SZ, Cai T et al. Time-resolved MR angiography: a primary screening examination of patients with suspected pulmonary embolism and contraindications to administration of iodinated contrast material. Am J Roentgenol 2007; 188: 1246-1254
  • 58 Fink C, Puderbach M, Ley S et al. Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso. J Magn Reson Imaging 2005; 22: 286-290
  • 59 Kahana A, Lucarelli MJ, Grayev AM et al. Noninvasive dynamic magnetic resonance angiography with Time-Resolved Imaging of Contrast KineticS (TRICKS) in the evaluation of orbital vascular lesions. Arch Ophthalmol 2007; 125: 1635-1642
  • 60 Mell M, Tefera G, Thornton F et al. Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease. J Vasc Surg 2007; 45: 543-548
  • 61 Petkova M, Gauvrit JY, Trystram D et al. Three-dimensional dynamic time-resolved contrast-enhanced MRA using parallel imaging and a variable rate k-space sampling strategy in intracranial arteriovenous malformations. J Magn Reson Imaging 2009; 29: 7-12
  • 62 Thornton FJ, Du J, Suleiman SA et al. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging. J Magn Reson Imaging 2006; 24: 362-370
  • 63 Vattoth S, Cherian J, Pandey T. Magnetic resonance angiographic demonstration of carotid-cavernous fistula using elliptical centric time resolved imaging of contrast kinetics (EC-TRICKS). Magn Reson Imaging 2007; 25: 1227-1231
  • 64 Wang CC, Liang HL, Hsiao CC et al. Single-dose time-resolved contrast enhanced hybrid MR angiography in diagnosis of peripheral arterial disease: compared with digital subtraction angiography. J Magn Reson Imaging 2010; 32: 935-942
  • 65 Bley TA, Duffek CC, Francois CJ et al. Presurgical localization of the artery of Adamkiewicz with time-resolved 3.0-T MR angiography. Radiology 2010; 255: 873-881
  • 66 Boeckh-Behrens T, Bitterling H, Schichor C et al. Improved localization of spinal AV fistulas using contrast-enhanced MR angiography at 3 T. Fortschr Röntgenstr 2010; 182: 53-57
  • 67 Farb RI, Agid R, Willinsky RA et al. Cranial dural arteriovenous fistula: diagnosis and classification with time-resolved MR angiography at 3T. Am J Neuroradiol 2009; 30: 1546-1551
  • 68 Ganguli S, Pedrosa I, Smith MP et al. Low dose pedal magnetic resonance angiography at 3 tesla with time-resolved imaging of contrast kinetics: a feasibility study. Invest Radiol 2008; 43: 650-655
  • 69 Kunishima K, Mori H, Itoh D et al. Assessment of arteriovenous malformations with 3-Tesla time-resolved, contrast-enhanced, three-dimensional magnetic resonance angiography. J Neurosurg 2009; 110: 492-499
  • 70 Riccioli LA, Marliani AF, Ghedin P et al. CE-MR Angiography at 3.0 T Magnetic Field in the Study of Spinal Dural Arteriovenous Fistula. Preliminary Results. Interv Neuroradiol 2007; 13: 13-18
  • 71 Sakamoto S, Shibukawa M, Kiura Y et al. Evaluation of dural arteriovenous fistulas of cavernous sinus before and after endovascular treatment using time-resolved MR angiography. Neurosurg Rev 2010; 33: 217-222
  • 72 Zou Z, Ma L, Cheng L et al. Time-resolved contrast-enhanced MR angiography of intracranial lesions. J Magn Reson Imaging 2008; 27: 692-699
  • 73 Fink C, Ley S, Kroeker R et al. Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 2005; 40: 40-48
  • 74 Griswold MA, Jakob PM, Heidemann RM et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210
  • 75 Brauck K, Maderwald S, Vogt FM et al. Time-resolved contrast-enhanced magnetic resonance angiography of the hand with parallel imaging and view sharing: initial experience. Eur Radiol 2007; 17: 183-192
  • 76 Cohen EI, Weinreb DB, Siegelbaum RH et al. Time-resolved MR angiography for the classification of endoleaks after endovascular aneurysm repair. J Magn Reson Imaging 2008; 27: 500-503
  • 77 Fink C, Puderbach M, Ley S et al. Time-resolved echo-shared parallel MRA of the lung: observer preference study of image quality in comparison with non-echo-shared sequences. Eur Radiol 2005; 15: 2070-2074
  • 78 Gauvrit JY, Law M, Xu J et al. Time-resolved MR angiography: optimal parallel imaging method. Am J Neuroradiol 2007; 28: 835-838
  • 79 Kim CY, Mirza RA, Bryant JA et al. Central veins of the chest: evaluation with time-resolved MR angiography. Radiology 2008; 247: 558-566
  • 80 Kramer H, Michaely HJ, Requardt M et al. Effects of injection rate and dose on image quality in time-resolved magnetic resonance angiography (MRA) by using 1.0M contrast agents. Eur Radiol 2007; 17: 1394-1402
  • 81 Krishnam MS, Tomasian A, Lohan DG et al. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in cardiac and vascular diseases: correlation to high spatial resolution 3D contrast-enhanced MRA. Clin Radiol 2008; 63: 744-755
  • 82 Lee MW, Lee JM, Lee JY et al. Preoperative evaluation of hepatic arterial and portal venous anatomy using the time resolved echo-shared MR angiographic technique in living liver donors. Eur Radiol 2007; 17: 1074-1080
  • 83 Ley S, Fink C, Zaporozhan J et al. Value of high spatial and high temporal resolution magnetic resonance angiography for differentiation between idiopathic and thromboembolic pulmonary hypertension: initial results. Eur Radiol 2005; 15: 2256-2263
  • 84 Virmani R, Carroll TJ, Hung J et al. Diagnosis of subclavian steal syndrome using dynamic time-resolved magnetic resonance angiography: a technical note. Magn Reson Imaging 2008; 26: 287-292
  • 85 Cashen TA, Carr JC, Shin W et al. Intracranial time-resolved contrast-enhanced MR angiography at 3T. Am J Neuroradiol 2006; 27: 822-829
  • 86 Frydrychowicz A, Bley TA, Winterer JT et al. Accelerated time-resolved 3D contrast-enhanced MR angiography at 3T: clinical experience in 31 patients. MAGMA 2006; 19: 187-195
  • 87 Nael K, Michaely HJ, Villablanca P et al. Time-resolved contrast enhanced magnetic resonance angiography of the head and neck at 3.0 tesla: initial results. Invest Radiol 2006; 41: 116-124
  • 88 Saleh RS, Lohan DG, Villablanca JP et al. Assessment of craniospinal arteriovenous malformations at 3T with highly temporally and highly spatially resolved contrast-enhanced MR angiography. Am J Neuroradiol 2008; 29: 1024-1031
  • 89 Lim RP, Shapiro M, Wang EY et al. 3D time-resolved MR angiography (MRA) of the carotid arteries with time-resolved imaging with stochastic trajectories: comparison with 3D contrast-enhanced Bolus-Chase MRA and 3D time-of-flight MRA. Am J Neuroradiol 2008; 29: 1847-1854
  • 90 Vogt FM, Eggebrecht H, Laub G et al. High spatial and temporal resolution MRA (TWIST) in acute aortic dissection. Proc Intl Soc Mag Reson Med 2007; 15: 92
  • 91 Song T, Laine AF, Chen Q et al. Optimal k-space sampling for dynamic contrast-enhanced MRI with an application to MR renography. Magn Reson Med 2009; 61: 1242-1248
  • 92 Kim CY, Miller Jr MJ, Merkle EM. Time-resolved MR angiography as a useful sequence for assessment of ovarian vein reflux. Am J Roentgenol 2009; 193: W458-W463
  • 93 Lim RP, Jacob JS, Hecht EM et al. Time-resolved lower extremity MRA with temporal interpolation and stochastic spiral trajectories: preliminary clinical experience. J Magn Reson Imaging 2010; 31: 663-672
  • 94 Nael K, Krishnam M, Ruehm SG et al. Time-resolved MR angiography in the evaluation of central thoracic venous occlusive disease. Am J Roentgenol 2009; 192: 1731-1738
  • 95 Sandhu GS, Rezaee RP, Wright K et al. Time-resolved and bolus-chase MR angiography of the leg: branching pattern analysis and identification of septocutaneous perforators. Am J Roentgenol 2010; 195: 858-864
  • 96 Seng K, Maderwald S, de Greiff A et al. Dynamic contrast-enhanced magnetic resonance angiography of the thoracic vessels: an intraindividual comparison of different k-space acquisition strategies. Invest Radiol 2010; 45: 708-714
  • 97 Attenberger UI, Haneder S, Morelli JN et al. Peripheral arterial occlusive disease: evaluation of a high spatial and temporal resolution 3-T MR protocol with a low total dose of gadolinium versus conventional angiography. Radiology 2010; 257: 879-887
  • 98 Giesel FL, Runge V, Kirchin M et al. Three-dimensional multiphase time-resolved low-dose contrast-enhanced magnetic resonance angiography using TWIST on a 32-channel coil at 3 T: a quantitative and qualitative comparison of a conventional gadolinium chelate with a high-relaxivity agent. J Comput Assist Tomogr 2010; 34: 678-683
  • 99 Koktzoglou I, Sheehan JJ, Dunkle EE et al. Highly accelerated contrast-enhanced MR angiography: improved reconstruction accuracy and reduced noise amplification with complex subtraction. Magn Reson Med 2010; 64: 1843-1848
  • 100 Kramer U, Fenchel M, Laub G et al. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in the assessment of the abdominal aorta and its major branches at 3 Tesla. Acad Radiol 2010; 17: 564-576
  • 101 Lee YJ, Laub G, Jung SL et al. Low-dose 3D time-resolved magnetic resonance angiography (MRA) of the supraaortic arteries: Correlation with high spatial resolution 3D contrast-enhanced MRA. J Magn Reson Imaging 2011; 33: 71-76
  • 102 Li D, Lin J, Yan F et al. Unenhanced calf MR angiography at 3.0 T using electrocardiography-gated partial-fourier fast spin echo imaging with variable flip angle. Eur Radiol 2010; 21: 1311-1322
  • 103 Oleaga L, Dalal SS, Weigele JB et al. The role of time-resolved 3D contrast-enhanced MR angiography in the assessment and grading of cerebral arteriovenous malformations. Eur J Radiol 2010; 74: e117-e121
  • 104 Voth M, Haneder S, Huck K et al. Peripheral magnetic resonance angiography with continuous table movement in combination with high spatial and temporal resolution time-resolved MRA With a total single dose (0.1 mmol/kg) of gadobutrol at 3.0 T. Invest Radiol 2009; 44: 627-633
  • 105 Jeong HJ, Eddleman CS, Shah S et al. Accelerating time-resolved MRA with multiecho acquisition. Magn Reson Med 2010; 63: 1520-1528
  • 106 Riederer SJ, Haider CR, Borisch EA. Time-of-arrival mapping at three-dimensional time-resolved contrast-enhanced MR angiography. Radiology 2009; 253: 532-542
  • 107 Reinacher P, Reinges MH, Simon VA et al. Dynamic 3-D contrast-enhanced angiography of cerebral tumours and vascular malformations. Eur Radiol 2007; 17: F52-F62
  • 108 Fellner C, Lang W, Janka R et al. Magnetic resonance angiography of the carotid arteries using three different techniques: accuracy compared with intraarterial x-ray angiography and endarterectomy specimens. J Magn Reson Imaging 2005; 21: 424-431
  • 109 Lenhart M, Finkenzeller T, Paetzel C et al. Contrast-enhanced MR angiography in the routine work-up of the lower extremity arteries. Fortschr Röntgenstr 2002; 174: 1289-1295
  • 110 Sasaki M, Oikawa H, Yoshioka K et al. Combining time-resolved and single-phase 3D techniques in contrast-enhanced carotid MR angiography. Magn Reson Med Sci 2002; 1: 1-6
  • 111 Spuentrup E, Wiethoff AJ, Parsons EC et al. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent. Eur J Radiol 2010; 74: 445-452
  • 112 Shim YW, Chung TS, Kang WS et al. Hemodynamical assessment of cavernous hemangioma in cavernous sinus using MR-DSA and conventional DSA. Yonsei Med J 2003; 44: 908-914
  • 113 Illies T, Forkert ND, Saering D et al. Persistent hemodynamic changes in ruptured brain arteriovenous malformations. Stroke 2012; 43: 2910-2915
  • 114 Bink A, Berkefeld J, Wagner M et al. Detection and grading of dAVF: prospects and limitations of 3T MRI. Eur Radiol 2012; 22: 429-438
  • 115 Kim JS, Chandler A, Borzykowski R et al. Maximizing time-resolved MRA for differentiation of hemangiomas, vascular malformations and vascularized tumors. Pediatr Radiol 2012; 42: 775-784
  • 116 Yigit H, Turan A, Ergun E et al. Time-resolved MR angiography of the intracranial venous system: an alternative MR venography technique. Eur Radiol 2012; 22: 980-989
  • 117 Utriainen D, Feng W, Elias S et al. Using magnetic resonance imaging as a means to study chronic cerebral spinal venous insufficiency in multiple sclerosis patients. Tech Vasc Interv Radiol 2012; 15: 101-112
  • 118 Feng W, Utriainen D, Trifan G et al. Quantitative flow measurements in the internal jugular veins of multiple sclerosis patients using magnetic resonance imaging. Rev Recent Clin Trials 2012; 7: 117-126
  • 119 Haacke EM, Feng W, Utriainen D et al. Patients with multiple sclerosis with structural venous abnormalities on MR imaging exhibit an abnormal flow distribution of the internal jugular veins. J Vasc Interv Radiol 2012; 23: 60-68
  • 120 Ramey NA, Lucarelli MJ, Gentry LR et al. Clinical usefulness of orbital and facial Time-Resolved Imaging of Contrast KineticS (TRICKS) magnetic resonance angiography. Ophthal Plast Reconstr Surg 2012; 28: 361-368
  • 121 Jaspers K, Nijenhuis RJ, Backes WH. Differentiation of spinal cord arteries and veins by time-resolved MR angiography. J Magn Reson Imaging 2007; 26: 31-40
  • 122 Iwakura T, Takehara Y, Yamashita S et al. A case of paraspinal arteriovenous fistula in the lumbar spinal body assessed with time resolved three-dimensional phase contrast MRI. J Magn Reson Imaging 2012; 36: 1231-1233
  • 123 Schoenberg SO, Wunsch C, Knopp MV et al. Abdominal aortic aneurysm. Detection of multilevel vascular pathology by time-resolved multiphase 3D gadolinium MR angiography: initial report. Invest Radiol 1999; 34: 648-659
  • 124 Salanitri GC. Intercostal artery aneurysms complicating thoracic aortic coarctation: diagnosis with magnetic resonance angiography. Australas Radiol 2007; 51: 78-82
  • 125 Goo HW, Yang DH, Park IS et al. Time-resolved three-dimensional contrast-enhanced magnetic resonance angiography in patients who have undergone a Fontan operation or bidirectional cavopulmonary connection: initial experience. J Magn Reson Imaging 2007; 25: 727-736
  • 126 Goyen M, Ruehm SG, Jagenburg A et al. Pulmonary arteriovenous malformation: Characterization with time-resolved ultrafast 3D MR angiography. J Magn Reson Imaging 2001; 13: 458-460
  • 127 van der Laan MJ, Bakker CJ, Blankensteijn JD et al. Dynamic CE-MRA for endoleak classification after endovascular aneurysm repair. Eur J Vasc Endovasc Surg 2006; 31: 130-135
  • 128 Lookstein RA, Goldman J, Pukin L et al. Time-resolved magnetic resonance angiography as a noninvasive method to characterize endoleaks: initial results compared with conventional angiography. J Vasc Surg 2004; 39: 27-33
  • 129 Ge L, Bi X, Lai P et al. Time-resolved contrast-enhanced coronary magnetic resonance angiography with highly constrained projection reconstruction. Magn Reson Imaging 2010; 28: 195-199
  • 130 Lai P, Huang F, Li Y et al. Contrast-kinetics-resolved whole-heart coronary MRA using 3DPR. Magn Reson Med 2010; 63: 970-978
  • 131 Suever JD, Watson PJ, Eisner RL et al. Time-resolved analysis of coronary vein motion and cross-sectional area. J Magn Reson Imaging 2011; 34: 811-815
  • 132 Vakil P, Carr JC, Carroll TJ. Combined renal MRA and perfusion with a single dose of contrast. Magn Reson Imaging 2012; 30: 878-885
  • 133 Morelli JN, Ai F, Runge VM et al. Time-resolved MR angiography of renal artery stenosis in a swine model at 3 Tesla using gadobutrol with digital subtraction angiography correlation. J Magn Reson Imaging 2012; 36: 704-713
  • 134 Morelli JN, Runge VM, Ai F et al. Magnetic resonance evaluation of renal artery stenosis in a swine model: performance of low-dose gadobutrol versus gadoterate meglumine in comparison with digital subtraction intra-arterial catheter angiography. Invest Radiol 2012; 47: 376-382
  • 135 Ganeshan A, Upponi S, Hon LQ et al. Chronic pelvic pain due to pelvic congestion syndrome: the role of diagnostic and interventional radiology. Cardiovasc Intervent Radiol 2007; 30: 1105-1111
  • 136 Pandey T, Shaikh R, Viswamitra S et al. Use of time resolved magnetic resonance imaging in the diagnosis of pelvic congestion syndrome. J Magn Reson Imaging 2010; 32: 700-704
  • 137 Yang DM, Kim HC, Nam DH et al. Time-resolved MR angiography for detecting and grading ovarian venous reflux: comparison with conventional venography. Br J Radiol 2012; 85: e117-e122
  • 138 Tongdee R, Narra VR, McNeal G et al. Hybrid peripheral 3D contrast-enhanced MR angiography of calf and foot vasculature. Am J Roentgenol 2006; 186: 1746-1753
  • 139 Wang Y, Chen CZ, Chabra SG et al. Bolus arterial-venous transit in the lower extremity and venous contamination in bolus chase three-dimensional magnetic resonance angiography. Invest Radiol 2002; 37: 458-463
  • 140 Floery D, Fellner FA, Fellner C et al. Time-Resolved Contrast-Enhanced MR Angiography of the Lower Limbs: Solving the Problem of Venous Overlap. Fortschr Röntgenstr 2010; DOI: 10.1055/ s-0029-1245722.
  • 141 Floery D, Fellner FA, Fellner C et al. Time-resolved contrast-enhanced MR angiography of the lower limbs: solving the problem of venous overlap. Fortschr Röntgenstr 2011; 183: 136-143
  • 142 Kramer U, Ernemann U, Fenchel M et al. Pretreatment evaluation of peripheral vascular malformations using low-dose contrast-enhanced time-resolved 3D MR angiography: initial results in 22 patients. Am J Roentgenol 2011; 196: 702-711
  • 143 Mostardi PM, Young PM, McKusick MA et al. High temporal and spatial resolution imaging of peripheral vascular malformations. J Magn Reson Imaging 2012; 36: 933-942
  • 144 Kramer U, Ernemann U, Mangold S et al. Diagnostic value of high spatial and temporal resolution time-resolved MR angiography in the workup of peripheral high-flow vascular malformations at 1.5 Tesla. Int J Cardiovasc Imaging 2012; 28: 823-834
  • 145 Mende KA, Froehlich JM, von Weymarn C et al. Time-resolved, high-resolution contrast-enhanced MR angiography of dialysis shunts using the CENTRA keyhole technique with parallel imaging. J Magn Reson Imaging 2007; 25: 832-840
  • 146 Nicolas M, Laurent V, Tissier S et al. Dynamic evaluation of lower limb arteries using the ECTRICKS MRI technique. J Radiol 2005; 86: 49-59
  • 147 Planken RN, Tordoir JH, Dammers R et al. Stenosis detection in forearm hemodialysis arteriovenous fistulae by multiphase contrast-enhanced magnetic resonance angiography: preliminary experience. J Magn Reson Imaging 2003; 17: 54-64
  • 148 Zhang HL, Kent KC, Bush HL et al. Soft tissue enhancement on time-resolved peripheral magnetic resonance angiography. J Magn Reson Imaging 2004; 19: 590-597
  • 149 Andrade-Souza YM, Zadeh G, Ramani M et al. Testing the radiosurgery-based arteriovenous malformation score and the modified spetzler-martin grading system to predict radiosurgical outcome. J Neurosurg 2005; 103: 642-648
  • 150 Saleh RS, Singhal A, Lohan D et al. Assessment of cerebral arteriovenous malformations with high temporal and spatial resolution contrast-enhanced magnetic resonance angiography: a review from protocol to clinical application. Top Magn Reson Imaging 2008; 19: 251-257
  • 151 Klisch J, Strecker R, Hennig J et al. Time-resolved projection MRA: clinical application in intracranial vascular malformations. Neuroradiology 2000; 42: 104-107
  • 152 Shim YW, Chung TS, Kang WS et al. Non-invasive follow-up evaluation of post-embolized AVM with time-resolved MRA: a case report. Korean J Radiol 2002; 3: 271-275
  • 153 Taschner CA, Gieseke J, Le T et al. Intracranial arteriovenous malformation: time-resolved contrast-enhanced MR angiography with combination of parallel imaging, keyhole acquisition, and k-space sampling techniques at 1.5 T. Radiology 2008; 246: 871-879
  • 154 Fink C, Bock M, Kiessling F et al. Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging 2004; 19: 202-208
  • 155 Hoffmann U, Schima W, Herold C. Pulmonary magnetic resonance angiography. Eur Radiol 1999; 9: 1745-1754
  • 156 Grist TM, Mistretta CA, Strother CM et al. Time-resolved angiography: Past, present, and future. J Magn Reson Imaging 2012; 36: 1273-1286
  • 157 Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182-1195
  • 158 Eddleman CS, Jeong HJ, Hurley MC et al. 4D radial acquisition contrast-enhanced MR angiography and intracranial arteriovenous malformations: quickly approaching digital subtraction angiography. Stroke 2009; 40: 2749-2753
  • 159 Yamashita S, Isoda H, Hirano M et al. Visualization of hemodynamics in intracranial arteries using time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging 2007; 25: 473-478
  • 160 Schubert T, Santini F, Stalder AF et al. Dampening of Blood-Flow Pulsatility along the Carotid Siphon: Does Form Follow Function?. Am J Neuroradiol 2011; 32: 1107-1112
  • 161 Bock J, Frydrychowicz A, Stalder AF et al. 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 2010; 63: 330-338
  • 162 Hope TA, Herfkens RJ. Imaging of the thoracic aorta with time-resolved three-dimensional phase-contrast MRI: a review. Semin Thorac Cardiovasc Surg 2008; 20: 358-364
  • 163 Liu X, Weale P, Reiter G et al. Breathhold time-resolved three-directional MR velocity mapping of aortic flow in patients after aortic valve-sparing surgery. J Magn Reson Imaging 2009; 29: 569-575
  • 164 Markl M, Harloff A, Bley TA et al. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 2007; 25: 824-831
  • 165 Frydrychowicz A, Francois CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: Potential clinical applications. Eur J Radiol 2011; 80: 24-35
  • 166 Saybasili H, Faranesh AZ, Saikus CE et al. Interventional MRI using multiple 3D angiography roadmaps with real-time imaging. J Magn Reson Imaging 2010; 31: 1015-1019
  • 167 Seppenwoolde JH, Bartels LW, van der Weide R. Fully MR-guided hepatic artery catheterization for selective drug delivery: a feasibility study in pigs. J Magn Reson Imaging 2006; 23: 123-129