Aktuelle Ernährungsmedizin 2014; 39(04): e99-e147
DOI: 10.1055/s-0034-1370222
Leitlinie
© Georg Thieme Verlag KG Stuttgart · New York

S3-Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) in Zusammenarbeit mit der Gesellschaft für klinische Ernährung der Schweiz (GESKES), der Österreichischen Arbeitsgemeinschaft für klinische Ernährung (AKE), die Deutsche Gesellschaft für Kinder- und Jugendmedizin (DGKJ) und die Gesellschaft für Neonatologie und pädiatrische Intensivmedizin (GNPI)

Parenterale Ernährung in der Kinder- und JugendmedizinS3-Guideline of the German Society for Nutritional Medicine (DGEM) in Cooperation with the GESKES, the AKE, the DGKJ and the GNPIParenterale Nutrition in Paediatrics
F. Jochum
1   Evangelisches Waldkrankenhaus Spandau, Klinik für Kinder- und Jugendmedizin, Berlin, Deutschland
,
K. Krohn
2   iSPZ im Dr. von Haunerschen Kinderspital der LMU München – Kindergastroenterologie
,
M. Kohl
3   Universitätsklinikum Schleswig-Holstein, Klinik für Allgemeine Pädiatrie, Kiel/Lübeck, Deutschland
,
A. Loui
4   Charité, Campus Virchow Klinikum, Klinik für Neonatologie, Berlin, Deutschland
,
A. Nomayo
1   Evangelisches Waldkrankenhaus Spandau, Klinik für Kinder- und Jugendmedizin, Berlin, Deutschland
,
B. Koletzko
5   Dr. von Haunersches Kinderspital Kinderklinik und Kinderpoliklinik der Ludwig-Maximilians-Universität München, Abteilung für Stoffwechsel und Ernährung, München, Deutschland
,
und das DGEM Steering Committee › Author Affiliations
Further Information

Publication History

Publication Date:
07 August 2014 (online)

Zusammenfassung

Eine besondere Herausforderung bei der Durchführung parenteraler Ernährung (PE) bei pädiatrischen Patienten ergibt sich aus der großen Spannbreite der Physiologie und Physiognomie von Säuglingen, Kleinkindern, Kindern und Jugendlichen, die von extrem unreifen Frühgeborenen bis hin zu Jugendlichen mit einem Körpergewicht von mehr als 100 kg reicht, und dem jeweils unterschiedlichen Substratbedarf. Dabei sind alters- und reifeabhängige Veränderungen des Stoffwechsels sowie des Flüssigkeits- und Nährstoffbedarfs zu berücksichtigen sowie auch die klinische Situation, in der eine PE eingesetzt wird. Das Vorgehen unterscheidet sich deshalb ganz erheblich von der PE-Praxis bei erwachsenen Patienten, z. B. ist der Flüssigkeits-, Nährstoff- und Energiebedarf von Früh- und Neugeborenen pro kg Körpergewicht weitaus höher als bei älteren pädiatrischen und erwachsenen Patienten. In der Regel benötigen alle Frühgeborenen < 35 SSW und alle kranken Reifgeborenen (angepasst an Erkrankung und Klinik) während der Phase des allmählichen Aufbaus der oralen und enteralen Nahrungszufuhr eine vollständige oder partielle PE. Die Zufuhrmengen der PE bei Neonaten müssen berechnet (nicht geschätzt) werden. Der Anteil der PE sollte zur Minimierung von Nebenwirkungen sobald wie möglich durch Einführung einer enteralen Ernährung vermindert (teilparenterale Ernährung) und schließlich komplett durch enterale Ernährung abgelöst werden. Eine unangemessene Substratzufuhr im frühen Säuglingsalter kann langfristig nachteilige Auswirkungen im Sinne einer metabolischen Programmierung des Krankheitsrisikos im späteren Lebensalter haben. Wenn bei älteren Kindern und Jugendlichen die enterale Energie- und Nährstoffzufuhr nicht bedarfsgerecht möglich ist, sollte abhängig von Ernährungszustand und klinischen Umständen spätestens innerhalb von 7 Tagen eine partielle oder totale PE erwogen werden.

Abstract

Implementing parenteral nutrition (PN) in paediatric patients poses special challenges, which arise from the wide range of patients’ conditions, ranging from extremely premature infants up to teenagers weighing up to and over 100 kg, and their varying substrate requirements. In addition age and maturity-related changes of the metabolism and fluid and nutrient requirements must be taken into consideration, along with the clinical situation during which PN is applied. The indication, the procedure as well as the intake of fluid and substrates are very different to that known in PN practice in adult patients, e. g. the fluid, nutrient and energy intake of premature infants and newborns per kg body weight is higher than that of older paediatric and adult patients. All premature infants < 35 weeks of pregnancy and most ill term infants require full or partial PN. In neonates the actual amount of PN administered must be calculated (not estimated). Enteral nutrition should be gradually introduced and should replace PN as quickly as possible in order to minimise any side-effects from exposure to PN. Inadequate substrate intake in early infancy can cause long-term detrimental effects in terms of metabolic programming of the risk of illness in later life. In school-aged children and adolescents who achieve an oral or enteral intake that however does not approach their energy and nutrient demands, partial or total PN should be considered no later than after 7 days, taking into account nutritional status and clinical conditions.

* DGEM Steering Committee: Bischoff SC, Lochs H, Weimann A sowie das DGEM-Präsidium


 
  • Literatur

  • 1 Koletzko B, Goulet O, Hunt J et al. Parenteral Nutrition Guidelines Working Group. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J Pediatr Gastroenterol Nutr 2005; 41 (Suppl. 02) S1-87
  • 2 Koletzko B, Cooper P, Garza C, Makrides M, Uauy R, Wang W. Pediatric Nutrition in practice. Basel: Karger Verlag; 2008
  • 3 Koletzko B. Nutritional needs of infants, children and adolescents. In: Sobotka L, ed. Basics in Clinical Nutrition. 4th. ed., Prague: Galén; 2011
  • 4 Fusch C, Bauer K, Böhles H et al. Leitlinie Parenterale Ernährung der DGEM: Neonatologie/Pädiatrie. Aktuel Ernahrungsmed 2007; 32: 72-88
  • 5 Stingel K, Schütz T, Koller M et al. Leitlinie der Deutschen Gesellschaft für Ernährungsmedizin (DGEM) – Methodik zum Leitlinien-Update Klinische Ernährung. Aktuel Ernahrungsmed 2013; 38: 90-96
  • 6 Friis-Hansen B. Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 1961; 28: 169-181
  • 7 Widdowson E. Changes of body composition during growth. In: Davis J, Dobbing J, eds. Scientific foundations of paediatrics. London: Heinemann; 1981
  • 8 Fusch C, Hungerland E, Scharrer B et al. Water turnover of healthy children measured by deuterated water elimination. Eur J Pediatr 1993; 152: 110-114
  • 9 Spitzer A. Renal physiology and function development. In: Edelmann CM, ed. The kidney and urinary tract. Boston: Little Brown; 1978
  • 10 Costarino AT, Baumgart S. Neonatal water and electrolyte metabolism. In: Cowett R, ed. Principles of perinatal-neonatal metabolism. New York: Springer; 1998
  • 11 Edelmann CM, Trompkom V, Barnett HL. Renal concentrating ability in newborn infants. Fed Proc 1959; 18: 49-54
  • 12 Aperia A, Broberger O, Elinder G et al. Postnatal development of renal function in pre-term and full-term infants. Acta Paediatr Scand 1981; 70: 183-187
  • 13 Fawer CL, Torrado A, Guignard JP. Maturation of renal function in full-term and premature neonates. Helv Paediatr Acta 1979; 34: 11-21
  • 14 Bernardi JL, Goulart AL, Amancio OM. Growth and energy and protein intake of preterm newborns in the first year of gestation-corrected age. Sao Paulo Med J 2003; 121: 5-8
  • 15 Butte NF, Wong WW, Garza C et al. Energy requirements of breast-fed infants. J Am Coll Nutr 1991; 10: 190-195
  • 16 Picaud JC, Putet G, Rigo J et al. Metabolic and energy balance in small- and appropriate-for-gestational-age, very low-birth-weight infants. Acta Paediatr Suppl 1994; 405: 54-59
  • 17 American Academy of Pediatrics, Committee on Nutrition. Nutritional needs of preterm Infants. In: Kleinman RE, ed. Pediatric Nutrition Handbook. Elk Grove Village: American Academy of Pediatrics; 1998
  • 18 Lucas A. Programming by early nutrition in man. Ciba Found Symp 1991; 156: 38-50; discussion 50–55
  • 19 Hanley B, Dijane J, Fewtrell M et al. Metabolic imprinting, programming and epigenetics – a review of present priorities and future opportunities. Br J Nutr 2010; 104 (Suppl. 01) S1-25
  • 20 Koletzko B, Symonds ME, Olsen SF et al. Programming research: where are we and where do we go from here?. Am J Clin Nutr 2011; 94: 2036S-2043S
  • 21 Symonds ME, Mendez MA, Meltzer HM et al. Early life nutritional programming of obesity: mother-child cohort studies. Ann Nutr Metab 2013; 62: 137-145
  • 22 Koletzko B, Akerblom H, Dodds PF, Ashwell M. Early nutrition and its later consequences: New opportunities. New York: Springer Publishers; 2005
  • 23 Atkinson SA, Koletzko B. Determining life-stage groups and extrapolating nutrient intake values (NIVs). Food Nutr Bull 2007; 28: S61-76
  • 24 Fusch C, Jochum F. Water, Sodium, Potassium, and Chloride. In: Tsang RC, Lucas A, Uauy R, Zlotkin S, eds. Nutritional needs of the preterm Infant. Baltimore: Williams & Wilkins; 2004
  • 25 Brown MR, Thunberg BJ, Golub L et al. Decreased cholestasis with enteral instead of intravenous protein in the very low-birth-weight infant. J Pediatr Gastroenterol Nutr 1989; 9: 21-27
  • 26 Sohn AH, Garrett DO, Sinkowitz-Cochran RL et al. Prevalence of nosocomial infections in neonatal intensive care unit patients: Results from the first national point-prevalence survey. J Pediatr 2001; 139: 821-827
  • 27 Vaidya UV, Hegde VM, Bhave SA et al. Reduction in parenteral nutrition related complications in the newborn. Indian Pediatr 1991; 28: 477-484
  • 28 Nosocomial infection rates for interhospital comparison: limitations and possible solutions. A Report from the National Nosocomial Infections Surveillance (NNIS) System. Infect Control Hosp Epidemiol 1991; 12: 609-621
  • 29 Suchner U, Senftleben U, Eckart T et al. Enteral versus parenteral nutrition: effects on gastrointestinal function and metabolism. Nutrition 1996; 12: 13-22
  • 30 Deutsche Arbeitsgemeinschaft für künstliche Ernährung (DAKE), Österreichische Arbeitsgemeinschaft für künstliche Ernährung (AKE). Empfehlungen zur parenteralen Infusions- und Ernährungstherapie im Kindesalter. Klin Pädiatr 1987; 199: 315-317
  • 31 Aggett PJ, Bresson J, Haschke F et al. Recommended Dietary Allowances (RDAs), Recommended Dietary Intakes (RDIs), Recommended Nutrient Intakes (RNIs), and Population Reference Intakes (PRIs) are not “recommended intakes”. J Pediatr Gastroenterol Nutr 1997; 25: 236-241
  • 32 Agostoni C, Buonocore G, Carnielli VP et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr 2010; 50: 85-91
  • 33 Tsang R, Uauy R, Koletzko B, Zlotkin S. Scientific basis and practical application. 2nd. ed., Cincinnati: Digital Ed Publ; 2005
  • 34 Embleton NE, Pang N, Cooke RJ. Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants?. Pediatrics 2001; 107: 270-273
  • 35 Sonntag J, Grimmer I, Scholz T et al. Growth and neurodevelopmental outcome of very low birthweight infants with necrotizing enterocolitis. Acta Paediatr 2000; 89: 528-532
  • 36 Ziegler EE, Thureen PJ, Carlson SJ. Aggressive nutrition of the very low birthweight infant. Clin Perinatol 2002; 29: 225-244
  • 37 American Academy of Pediatrics Committee on Nutrition. Nutritional needs of low-birth-weight infants. Pediatrics 1985; 75: 976-986
  • 38 Energy and protein requirements. Report of a joint FAO/WHO/UNU Expert Consultation. World Health Organ Tech Rep Ser 1985; 724: 1-206
  • 39 Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 1985; 39 (Suppl. 01) 5-41
  • 40 Harris JA, Benedict FG. A biometric study of human basal metabolism. Proc Natl Acad Sci U S A 1918; 12: 370-373
  • 41 Kalhan SC, Kilic I. Carbohydrate as nutrient in the infant and child: range of acceptable intake. Eur J Clin Nutr 1999; 53 (Suppl. 01) S94-100
  • 42 Denne SC, Karn CA, Wang J et al. Effect of intravenous glucose and lipid on proteolysis and glucose production in normal newborns. Am J Physiol 1995; 269: E361-367
  • 43 Lafeber HN, Sulkers EJ, Chapman TE et al. Glucose production and oxidation in preterm infants during total parenteral nutrition. Pediatr Res 1990; 28: 153-157
  • 44 Sunehag AL, Haymond MW, Schanler RJ et al. Gluconeogenesis in very low birth weight infants receiving total parenteral nutrition. Diabetes 1999; 48: 791-800
  • 45 Forsyth JS, Murdock N, Crighton A. Low birthweight infants and total parenteral nutrition immediately after birth. III. Randomised study of energy substrate utilisation, nitrogen balance, and carbon dioxide production. Arch Dis Child Fetal Neonatal Ed 1995; 73: F13-16
  • 46 Sauer PJ, Van Aerde JE, Pencharz PB et al. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13C]glucose. Clin Sci (Lond) 1986; 70: 587-593
  • 47 Jones MO, Pierro A, Hammond P et al. Glucose utilization in the surgical newborn infant receiving total parenteral nutrition. J Pediatr Surg 1993; 28: 1121-1125
  • 48 Nose O, Tipton JR, Ament ME et al. Effect of the energy source on changes in energy expenditure, respiratory quotient, and nitrogen balance during total parenteral nutrition in children. Pediatr Res 1987; 21: 538-541
  • 49 Sheridan RL, Yu YM, Prelack K et al. Maximal parenteral glucose oxidation in hypermetabolic young children: a stable isotope study. JPEN J Parenter Enteral Nutr 1998; 22: 212-216
  • 50 Chacko SK, Sunehag AL. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Arch Dis Child Fetal Neonatal Ed 2010; 95: F413-418
  • 51 Robin AP, Carpentier YA, Askanazi J et al. Metabolic consequences of hypercaloric glucose infusions. Acta Chir Belg 1981; 80: 133-140
  • 52 Koretz RL, Lipman TO, Klein S et al. AGA technical review on parenteral nutrition. Gastroenterology 2001; 121: 970-1001
  • 53 Burke JF, Wolfe RR, Mullany CJ et al. Glucose requirements following burn injury. Parameters of optimal glucose infusion and possible hepatic and respiratory abnormalities following excessive glucose intake. Ann Surg 1979; 190: 274-285
  • 54 Tulikoura I, Huikuri K. Morphological fatty changes and function of the liver, serum free fatty acids, and triglycerides during parenteral nutrition. Scand J Gastroenterol 1982; 17: 177-185
  • 55 Cowett RM, Andersen GE, Maguire CA et al. Ontogeny of glucose homeostasis in low birth weight infants. J Pediatr 1988; 112: 462-465
  • 56 Farrag HM, Nawrath LM, Healey JE et al. Persistent glucose production and greater peripheral sensitivity to insulin in the neonate vs. the adult. Am J Physiol 1997; 272: E86-93
  • 57 Pildes RS, Pyati SP. Hypoglycemia and hyperglycemia in tiny infants. Clin Perinatol 1986; 13: 351-375
  • 58 Dweck HS, Cassady G. Glucose intolerance in infants of very low birth weight. I. Incidence of hyperglycemia in infants of birth weights 1,100 grams or less. Pediatrics 1974; 53: 189-195
  • 59 Louik C, Mitchell AA, Epstein MF et al. Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am J Dis Child 1985; 139: 783-786
  • 60 Binder ND, Raschko PK, Benda GI et al. Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J Pediatr 1989; 114: 273-280
  • 61 Beardsall K, Dunger D. Insulin therapy in preterm newborns. Early Hum Dev 2008; 84: 839-842
  • 62 Alsweiler JM, Harding JE, Bloomfield FH. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 2012; 129: 639-647
  • 63 Bottino M, Cowett RM, Sinclair JC. Interventions for treatment of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst Rev 2011; (10) CD007453 DOI: CD007453.
  • 64 Collins Jr JW, Hoppe M, Brown K et al. A controlled trial of insulin infusion and parenteral nutrition in extremely low birth weight infants with glucose intolerance. J Pediatr 1991; 118: 921-927
  • 65 Meetze W, Bowsher R, Compton J et al. Hyperglycemia in extremely-low-birth-weight infants. Biol Neonate 1998; 74: 214-221
  • 66 Floyd Jr JC, Fajans SS, Conn JW et al. Stimulation of insulin secretion by amino acids. J Clin Invest 1966; 45: 1487-1502
  • 67 Axelsson IE, Ivarsson SA, Raiha NC. Protein intake in early infancy: effects on plasma amino acid concentrations, insulin metabolism, and growth. Pediatr Res 1989; 26: 614-617
  • 68 Thureen PJ, Melara D, Fennessey PV et al. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res 2003; 53: 24-32
  • 69 Yeung MY. Glucose intolerance and insulin resistance in extremely premature newborns, and implications for nutritional management. Acta Paediatr 2006; 95: 1540-1547
  • 70 Ibrahim HM, Jeroudi MA, Baier RJ et al. Aggressive early total parental nutrition in low-birth-weight infants. J Perinatol 2004; 24: 482-486
  • 71 te Braake FW, van den Akker CH, Wattimena DJ et al. Amino acid administration to premature infants directly after birth. J Pediatr 2005; 147: 457-461
  • 72 Maggio L, Cota F, Gallini F et al. Effects of high versus standard early protein intake on growth of extremely low birth weight infants. J Pediatr Gastroenterol Nutr 2007; 44: 124-129
  • 73 Burattini I, Bellagamba MP, Spagnoli C et al. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J Pediatr 2013; 163: 1278-82.e1
  • 74 Scattolin S, Gaio P, Betto M et al. Parenteral amino acid intakes: possible influences of higher intakes on growth and bone status in preterm infants. J Perinatol 2013; 33: 33-39
  • 75 Blanco CL, Falck A, Green BK et al. Metabolic responses to early and high protein supplementation in a randomized trial evaluating the prevention of hyperkalemia in extremely low birth weight infants. J Pediatr 2008; 153: 535-540
  • 76 Vandijck DM, Oeyen SG, Buyle EM et al. Hyperglycaemia upon onset of ICU-acquired bloodstream infection is associated with adverse outcome in a mixed ICU population. Anaesth Intensive Care 2008; 36: 25-29
  • 77 Egi M, Morimatsu H, Toda Y et al. Hyperglycemia and the outcome of pediatric cardiac surgery patients requiring peritoneal dialysis. Int J Artif Organs 2008; 31: 309-316
  • 78 Verbruggen SC, Joosten KF, Castillo L et al. Insulin therapy in the pediatric intensive care unit. Clin Nutr 2007; 26: 677-690
  • 79 Verhoeven JJ, Brand JB, van de Polder MM et al. Management of hyperglycemia in the pediatric intensive care unit; implementation of a glucose control protocol. Pediatr Crit Care Med 2009; 10: 648-652
  • 80 Hebson CL, Chanani NK, Rigby MR et al. Safe and effective use of a glycemic control protocol for neonates in a cardiac ICU. Pediatr Crit Care Med 2013; 14: 284-289
  • 81 Vlasselaers D, Milants I, Desmet L et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet 2009; 373: 547-556
  • 82 Duffy B, Gunn T, Collinge J et al. The effect of varying protein quality and energy intake on the nitrogen metabolism of parenterally fed very low birthweight (less than 1600 g) infants. Pediatr Res 1981; 15: 1040-1044
  • 83 Rigo J, Senterre J. Significance of plasma amino acid pattern in preterm infants. Biol Neonate 1987; 52 (Suppl. 01) 41-49
  • 84 Chessex P, Zebiche H, Pineault M et al. Effect of amino acid composition of parenteral solutions on nitrogen retention and metabolic response in very-low-birth weight infants. J Pediatr 1985; 106: 111-117
  • 85 Kovar IZ, Saini J, Morgan JB. The sick very low birthweight infant fed by parenteral nutrition: studies of nitrogen and energy. Eur J Clin Nutr 1989; 43: 339-346
  • 86 Nakagawa I, Takahashi T, Suzuki T et al. Amino acid requirements of children: minimal needs of threonine, valine and phenylalanine based on nitrogen balance method. J Nutr 1962; 77: 61-68
  • 87 Heird WC, Dell RB, Helms RA et al. Amino acid mixture designed to maintain normal plasma amino acid patterns in infants and children requiring parenteral nutrition. Pediatrics 1987; 80: 401-408
  • 88 Mager DR, Wykes LJ, Ball RO et al. Branched-chain amino acid requirements in school-aged children determined by indicator amino acid oxidation (IAAO). J Nutr 2003; 133: 3540-3545
  • 89 Turner JM, Humayun MA, Elango R et al. Total sulfur amino acid requirement of healthy school-age children as determined by indicator amino acid oxidation technique. Am J Clin Nutr 2006; 83: 619-623
  • 90 Courtney-Martin G, Chapman KP, Moore AM et al. Total sulfur amino acid requirement and metabolism in parenterally fed postsurgical human neonates. Am J Clin Nutr 2008; 88: 115-124
  • 91 Riedijk MA, Voortman G, van Beek RH et al. Cyst(e)ine requirements in enterally fed very low birth weight preterm infants. Pediatrics 2008; 121: e561-567
  • 92 Chapman KP, Courtney-Martin G, Moore AM et al. Threonine requirement of parenterally fed postsurgical human neonates. Am J Clin Nutr 2009; 89: 134-141
  • 93 Chapman KP, Courtney-Martin G, Moore AM et al. Lysine requirement in parenterally fed postsurgical human neonates. Am J Clin Nutr 2010; 91: 958-965
  • 94 Elango R, Humayun MA, Ball RO et al. Lysine requirement of healthy school-age children determined by the indicator amino acid oxidation method. Am J Clin Nutr 2007; 86: 360-365
  • 95 Roberts SA, Ball RO, Moore AM et al. The effect of graded intake of glycyl-L-tyrosine on phenylalanine and tyrosine metabolism in parenterally fed neonates with an estimation of tyrosine requirement. Pediatr Res 2001; 49: 111-119
  • 96 Gaull G, Sturman JA, Raiha NC. Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res 1972; 6: 538-547
  • 97 Raiha NC. Biochemical basis for nutritional management of preterm infants. Pediatrics 1974; 53: 147-156
  • 98 Holt Jr LE. Amino acid requirements of infants. Curr Ther Res Clin Exp 1967; 9 (Suppl. 01) 149-156
  • 99 Rigo J, Senterre J. Is taurine essential for the neonates?. Biol Neonate 1977; 32: 73-76
  • 100 Riedijk MA, van Beek RH, Voortman G et al. Cysteine: a conditionally essential amino acid in low-birth-weight preterm infants?. Am J Clin Nutr 2007; 86: 1120-1125
  • 101 Courtney-Martin G, Moore AM, Ball RO et al. The addition of cysteine to the total sulphur amino acid requirement as methionine does not increase erythrocytes glutathione synthesis in the parenterally fed human neonate. Pediatr Res 2010; 67: 320-324
  • 102 Olney JW, Ho OL, Rhee V. Brain-damaging potential of protein hydrolysates. N Engl J Med 1973; 289: 391-395
  • 103 Brunton JA, Ball RO, Pencharz PB. Current total parenteral nutrition solutions for the neonate are inadequate. Curr Opin Clin Nutr Metab Care 2000; 3: 299-304
  • 104 Poindexter BB, Ehrenkranz RA, Stoll BJ et al. Effect of parenteral glutamine supplementation on plasma amino acid concentrations in extremely low-birth-weight infants. Am J Clin Nutr 2003; 77: 737-743
  • 105 Van Goudoever JB, Sulkers EJ, Timmerman M et al. Amino acid solutions for premature neonates during the first week of life: the role of N-acetyl-L-cysteine and N-acetyl-L-tyrosine. JPEN J Parenter Enteral Nutr 1994; 18: 404-408
  • 106 House JD, Thorpe JM, Wykes LJ et al. Evidence that phenylalanine hydroxylation rates are overestimated in neonatal subjects receiving total parenteral nutrition with a high phenylalanine content. Pediatr Res 1998; 43: 461-466
  • 107 Lucas A, Baker BA, Morley RM. Hyperphenylalaninaemia and outcome in intravenously fed preterm neonates. Arch Dis Child 1993; 68: 579-583
  • 108 Moss RL, Haynes AL, Pastuszyn A et al. Methionine infusion reproduces liver injury of parenteral nutrition cholestasis. Pediatr Res 1999; 45: 664-668
  • 109 Christensen ML, Helms RA, Veal DF et al. Clearance of N-acetyl-L-tyrosine in infants receiving a pediatric amino acid solution. Clin Pharm 1993; 12: 606-609
  • 110 Ahola T, Lapatto R, Raivio KO et al. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr 2003; 143: 713-719
  • 111 Beale EF, Nelson RM, Bucciarelli RL et al. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979; 64: 342-347
  • 112 Beath SV, Davies P, Papadopoulou A et al. Parenteral nutrition-related cholestasis in postsurgical neonates: multivariate analysis of risk factors. J Pediatr Surg 1996; 31: 604-606
  • 113 Denne SC, Poindexter BB. Evidence supporting early nutritional support with parenteral amino acid infusion. Semin Perinatol 2007; 31: 56-60
  • 114 Rivera Jr A, Bell EF, Bier DM. Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr Res 1993; 33: 106-111
  • 115 Zlotkin SH, Bryan MH, Anderson GH. Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J Pediatr 1981; 99: 115-120
  • 116 Vlaardingerbroek H, Vermeulen MJ, Rook D et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J Pediatr 2013; 163: 638-44.e1-5
  • 117 Poindexter BB. Early amino acid administration for premature neonates. The Journal of pediatrics 2004; 147: 420-421
  • 118 te Braake FW, van den Akker CH, Riedijk MA et al. Parenteral amino acid and energy administration to premature infants in early life. Semin Fetal Neonatal Med 2007; 12: 11-18
  • 119 Ehrenkranz RA. Early, aggressive nutritional management for very low birth weight infants: what is the evidence?. Semin Perinatol 2007; 31: 48-55
  • 120 Ziegler EE, O’Donnell AM, Nelson SE et al. Body composition of the reference fetus. Growth 1976; 40: 329-341
  • 121 Poindexter BB, Langer JC, Dusick AM et al. National Institute of Child Health and Human Development Neonatal Research Network. Early provision of parenteral amino acids in extremely low birth weight infants: relation to growth and neurodevelopmental outcome. J Pediatr 2006; 148: 300-305
  • 122 Kashyap S, Forsyth M, Zucker C et al. Effects of varying protein and energy intakes on growth and metabolic response in low birth weight infants. J Pediatr 1986; 108: 955-963
  • 123 Porcelli Jr PJ, Sisk PM. Increased parenteral amino acid administration to extremely low-birth-weight infants during early postnatal life. J Pediatr Gastroenterol Nutr 2002; 34: 174-179
  • 124 Kotsopoulos K, Benadiba-Torch A, Cuddy A et al. Safety and efficacy of early amino acids in preterm <28 weeks gestation: prospective observational comparison. J Perinatol 2006; 26: 749-754
  • 125 Blanco CL, Gong AK, Green BK et al. Early changes in plasma amino acid concentrations during aggressive nutritional therapy in extremely low birth weight infants. J Pediatr 2011; 158: 543-548.e1
  • 126 van den Akker CH, Vlaardingerbroek H, van Goudoever JB. Nutritional support for extremely low-birth weight infants: abandoning catabolism in the neonatal intensive care unit. Curr Opin Clin Nutr Metab Care 2010; 13: 327-335
  • 127 Bonsante F, Iacobelli S, Chantegret C et al. The effect of parenteral nitrogen and energy intake on electrolyte balance in the preterm infant. Eur J Clin Nutr 2011; 65: 1088-1093
  • 128 Valentine CJ, Fernandez S, Rogers LK et al. Early amino-acid administration improves preterm infant weight. J Perinatol 2009; 29: 428-432
  • 129 Clark RH, Chace DH, Spitzer AR et al. Pediatrix Amino Acid Study Group. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: a randomized, controlled trial. Pediatrics 2007; 120: 1286-1296
  • 130 Stephens BE, Walden RV, Gargus RA et al. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009; 123: 1337-1343
  • 131 Moyses HE, Johnson MJ, Leaf AA et al. Early parenteral nutrition and growth outcomes in preterm infants: a systematic review and meta-analysis. Am J Clin Nutr 2013; 97: 816-826
  • 132 Turner JM, Humayun MA, Elango R et al. Total sulfur amino acid requirement of healthy school-age children as determined by indicator amino acid oxidation technique. Am J Clin Nutr 2006; 83: 619-623
  • 133 Bresson JL, Narcy P, Putet G et al. Energy substrate utilization in infants receiving total parenteral nutrition with different glucose to fat ratios. Pediatr Res 1989; 25: 645-648
  • 134 Salas-Salvado J, Molina J, Figueras J et al. Effect of the quality of infused energy on substrate utilization in the newborn receiving total parenteral nutrition. Pediatr Res 1993; 33: 112-117
  • 135 Pierro A, Carnielli V, Filler RM et al. Metabolism of intravenous fat emulsion in the surgical newborn. J Pediatr Surg 1989; 24: 95-101; Discussion 101–102
  • 136 Bresson JL, Bader B, Rocchiccioli F et al. Protein-metabolism kinetics and energy-substrate utilization in infants fed parenteral solutions with different glucose-fat ratios. Am J Clin Nutr 1991; 54: 370-376
  • 137 Macfie J, Smith RC, Hill GL. Glucose or fat as a nonprotein energy source? A controlled clinical trial in gastroenterological patients requiring intravenous nutrition. Gastroenterology 1981; 80: 103-107
  • 138 Sunehag AL. The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr Res 2003; 54: 480-486
  • 139 Cooke RJ, Zee P, Yeh YY. Essential fatty acid status of the premature infant during short-term fat-free parenteral nutrition. J Pediatr Gastroenterol Nutr 1984; 3: 446-449
  • 140 Friedman Z, Danon A, Stahlman MT et al. Rapid onset of essential fatty acid deficiency in the newborn. Pediatrics 1976; 58: 640-649
  • 141 Lee EJ, Simmer K, Gibson RA. Essential fatty acid deficiency in parenterally fed preterm infants. J Paediatr Child Health 1993; 29: 51-55
  • 142 Cooke RJ, Yeh YY, Gibson D et al. Soybean oil emulsion administration during parenteral nutrition in the preterm infant: effect on essential fatty acid, lipid, and glucose metabolism. J Pediatr 1987; 111: 767-773
  • 143 Anderson GJ, Connor WE. On the demonstration of omega-3 essential-fatty-acid deficiency in humans. Am J Clin Nutr 1989; 49: 585-587
  • 144 Holman RT, Johnson SB. Linolenic acid deficiency in man. Nutr Rev 1982; 40: 144-147
  • 145 Brans YW, Andrew DS, Carrillo DW et al. Tolerance of fat emulsions in very-low-birth-weight neonates. Am J Dis Child 1988; 142: 145-152
  • 146 Hilliard JL, Shannon DL, Hunter MA et al. Plasma lipid levels in preterm neonates receiving parenteral fat emulsions. Arch Dis Child 1983; 58: 29-33
  • 147 Kao LC, Cheng MH, Warburton D. Triglycerides, free fatty acids, free fatty acids/albumin molar ratio, and cholesterol levels in serum of neonates receiving long-term lipid infusions: controlled trial of continuous and intermittent regimens. J Pediatr 1984; 104: 429-435
  • 148 Brans YW, Andrew DS, Carrillo DW et al. Tolerance of fat emulsions in very low birthweight neonates: effect of birthweight on plasma lipid concentrations. Am J Perinatol 1990; 7: 114-117
  • 149 Brans YW, Dutton EB, Andrew DS et al. Fat emulsion tolerance in very low birth weight neonates: effect on diffusion of oxygen in the lungs and on blood pH. Pediatrics 1986; 78: 79-84
  • 150 Dhanireddy R, Hamosh M, Sivasubramanian KN et al. Postheparin lipolytic activity and Intralipid clearance in very low-birth-weight infants. J Pediatr 1981; 98: 617-622
  • 151 Spear ML, Stahl GE, Hamosh M et al. Effect of heparin dose and infusion rate on lipid clearance and bilirubin binding in premature infants receiving intravenous fat emulsions. J Pediatr 1988; 112: 94-98
  • 152 Berkow SE, Spear ML, Stahl GE et al. Total parenteral nutrition with intralipid in premature infants receiving TPN with heparin: effect on plasma lipolytic enzymes, lipids, and glucose. J Pediatr Gastroenterol Nutr 1987; 6: 581-588
  • 153 Basu R, Muller DP, Papp E et al. Free radical formation in infants: the effect of critical illness, parenteral nutrition, and enteral feeding. J Pediatr Surg 1999; 34: 1091-1095
  • 154 Pironi L, Guidetti M, Zolezzi C et al. Peroxidation potential of lipid emulsions after compounding in all-in-one solutions. Nutrition 2003; 19: 784-788
  • 155 Pitkanen O, Hallman M, Andersson S. Generation of free radicals in lipid emulsion used in parenteral nutrition. Pediatr Res 1991; 29: 56-59
  • 156 Greene HL, Moore ME, Phillips B et al. Evaluation of a pediatric multiple vitamin preparation for total parenteral nutrition. II. Blood levels of vitamins A, D, and E. Pediatrics 1986; 77: 539-547
  • 157 Manuel-y-Keenoy B, Nonneman L, De Bosscher H et al. Effects of intravenous supplementation with alpha-tocopherol in patients receiving total parenteral nutrition containing medium- and long-chain triglycerides. Eur J Clin Nutr 2002; 56: 121-128
  • 158 Wu GH, Jarstrand C, Nordenstrom J. Phagocyte-induced lipid peroxidation of different intravenous fat emulsions and counteractive effect of vitamin E. Nutrition 1999; 15: 359-364
  • 159 Haumont D, Deckelbaum RJ, Richelle M et al. Plasma lipid and plasma lipoprotein concentrations in low birth weight infants given parenteral nutrition with twenty or ten percent lipid emulsion. J Pediatr 1989; 115: 787-793
  • 160 Koletzko B, Agostoni C, Carlson SE et al. Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatr 2001; 90: 460-464
  • 161 Uauy R, Hoffman DR, Peirano P et al. Essential fatty acids in visual and brain development. Lipids 2001; 36: 885-895
  • 162 Smirniotis V, Kostopanagiotou G, Vassiliou J et al. Long chain versus medium chain lipids in patients with ARDS: effects on pulmonary haemodynamics and gas exchange. Intensive Care Med 1998; 24: 1029-1033
  • 163 Cairns PA, Stalker DJ. Carnitine supplementation of parenterally fed neonates. Cochrane Database Syst Rev 2000; (04) CD000950
  • 164 Goel R, Hamosh M, Stahl GE et al. Plasma lecithin: cholesterol acyltransferase and plasma lipolytic activity in preterm infants given total parenteral nutrition with 10% or 20% Intralipid. Acta Paediatr 1995; 84: 1060-1064
  • 165 Morris S, Simmer K, Gibson R. Characterization of fatty acid clearance in premature neonates during intralipid infusion. Pediatr Res 1998; 43: 245-249
  • 166 Vlaardingerbroek H, Veldhorst MA, Spronk S et al. Parenteral lipid administration to very-low-birth-weight infants – early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis. Am J Clin Nutr 2012; 96: 255-268
  • 167 Goulet O, de Potter S, Antebi H et al. Long-term efficacy and safety of a new olive oil-based intravenous fat emulsion in pediatric patients: a double-blind randomized study. Am J Clin Nutr 1999; 70: 338-345
  • 168 Gobel Y, Koletzko B, Bohles HJ et al. Parenteral fat emulsions based on olive and soybean oils: a randomized clinical trial in preterm infants. J Pediatr Gastroenterol Nutr 2003; 37: 161-167
  • 169 Donnell SC, Lloyd DA, Eaton S et al. The metabolic response to intravenous medium-chain triglycerides in infants after surgery. J Pediatr 2002; 141: 689-694
  • 170 Rubin M, Harell D, Naor N et al. Lipid infusion with different triglyceride cores (long-chain vs medium-chain/long-chain triglycerides): effect on plasma lipids and bilirubin binding in premature infants. JPEN J Parenter Enteral Nutr 1991; 15: 642-646
  • 171 Baldermann H, Wicklmayr M, Rett K et al. Changes of hepatic morphology during parenteral nutrition with lipid emulsions containing LCT or MCT/LCT quantified by ultrasound. JPEN J Parenter Enteral Nutr 1991; 15: 601-603
  • 172 Lima LA, Murphy JF, Stansbie D et al. Neonatal parenteral nutrition with a fat emulsion containing medium chain triglycerides. Acta Paediatr Scand 1988; 77: 332-339
  • 173 Deckelbaum RJ, Hamilton JA, Moser A et al. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry 1990; 29: 1136-1142
  • 174 Radermacher P, Santak B, Strobach H et al. Fat emulsions containing medium chain triglycerides in patients with sepsis syndrome: effects on pulmonary hemodynamics and gas exchange. Intensive Care Med 1992; 18: 231-234
  • 175 Roth B, Ekelund M, Fan BG et al. Biochemical and ultra-structural reactions to parenteral nutrition with two different fat emulsions in rats. Intensive Care Med 1998; 24: 716-724
  • 176 Yeh SL, Lin MT, Chen WJ. MCT/LCT emulsion ameliorate liver fat deposition in insulin-treated diabetic rats receiving total parenteral nutrition. Clin Nutr 1998; 17: 273-277
  • 177 Angsten G, Boberg M, Cederblad G et al. Metabolic effects in neonates receiving intravenous medium-chain triglycerides. Acta Paediatr 2002; 91: 188-197
  • 178 Ulrich H, Pastores SM, Katz DP et al. Parenteral use of medium-chain triglycerides: a reappraisal. Nutrition 1996; 12: 231-238
  • 179 Lai H, Chen W. Effects of medium-chain and long-chain triacylglycerols in pediatric surgical patients. Nutrition 2000; 16: 401-406
  • 180 Uhlemann MPC, Heine KD, Wutzke M et al. MCT-fat emulsions enhance efficacy of whole body protein metabolism in very small preterm neonates. Clin Nutr 1989; 53
  • 181 Liet JM, Piloquet H, Marchini JS et al. Leucine metabolism in preterm infants receiving parenteral nutrition with medium-chain compared with long-chain triacylglycerol emulsions. Am J Clin Nutr 1999; 69: 539-543
  • 182 Tomsits E, Pataki M, Tolgyesi A et al. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: a randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J Pediatr Gastroenterol Nutr 2010; 51: 514-521
  • 183 D’Ascenzo R, D’Egidio S, Angelini L et al. Parenteral nutrition of preterm infants with a lipid emulsion containing 10% fish oil: effect on plasma lipids and long-chain polyunsaturated fatty acids. J Pediatr 2011; 159: 33-38.e1
  • 184 Goulet O, Antebi H, Wolf C et al. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: a single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. JPEN J Parenter Enteral Nutr 2010; 34: 485-495
  • 185 Pawlik D, Lauterbach R, Turyk E. Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 2011; 127: 223-228
  • 186 Willis TC, Carter BA, Rogers SP et al. High rates of mortality and morbidity occur in infants with parenteral nutrition-associated cholestasis. JPEN J Parenter Enteral Nutr 2010; 34: 32-37
  • 187 Goulet O, Joly F, Corriol O et al. Some new insights in intestinal failure-associated liver disease. Curr Opin Organ Transplant 2009; 14: 256-261
  • 188 Koletzko B, Goulet O. Fish oil containing intravenous lipid emulsions in parenteral nutrition-associated cholestatic liver disease. Curr Opin Clin Nutr Metab Care 2010; 13: 321-326
  • 189 Colomb V, Jobert-Giraud A, Lacaille F et al. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. JPEN J Parenter Enteral Nutr 2000; 24: 345-350
  • 190 Puder M, Valim C, Meisel JA et al. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann Surg 2009; 250: 395-402
  • 191 Diamond IR, Sterescu A, Pencharz PB et al. The rationale for the use of parenteral omega-3 lipids in children with short bowel syndrome and liver disease. Pediatr Surg Int 2008; 24: 773-778
  • 192 Lange R, Erhard J, Eigler FW et al. Lactic acidosis from thiamine deficiency during parenteral nutrition in a two-year-old boy. Eur J Pediatr Surg 1992; 2: 241-244
  • 193 Greene HL, Hambidge KM, Schanler R et al. Guidelines for the use of vitamins, trace elements, calcium, magnesium, and phosphorus in infants and children receiving total parenteral nutrition: report of the Subcommittee on Pediatric Parenteral Nutrient Requirements from the Committee on Clinical Practice Issues of the American Society for Clinical Nutrition. Am J Clin Nutr 1988; 48: 1324-1342
  • 194 Boehles H, Greene H. Water-soluble vitamins for premature infants. In: Tsang RC, Uauy R, Koletzko B, Zlotkin SH, eds. Nutrition of the preterm infant. Scientific basis and practical guidelines. 2nd. ed., Cincinnati: Dig Educational Publishing Inc; 2005
  • 195 Porcelli PJ, Greene H, Adcock E. A modified vitamin regimen for vitamin B2, A, and E administration in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr 2004; 38: 392-400
  • 196 Gillis J, Jones G, Pencharz P. Delivery of vitamins A, D, and E in total parenteral nutrition solutions. JPEN J Parenter Enteral Nutr 1983; 7: 11-14
  • 197 Silvers KM, Sluis KB, Darlow BA et al. Limiting light-induced lipid peroxidation and vitamin loss in infant parenteral nutrition by adding multivitamin preparations to Intralipid. Acta Paediatr 2001; 90: 242-249
  • 198 Grand A, Jalabert A, Mercier G et al. Influence of vitamins, trace elements, and iron on lipid peroxidation reactions in all-in-one admixtures for neonatal parenteral nutrition. JPEN J Parenter Enteral Nutr 2011; 35: 505-510
  • 199 Laborie S, Lavoie JC, Chessex P. Increased urinary peroxides in newborn infants receiving parenteral nutrition exposed to light. J Pediatr 2000; 136: 628-632
  • 200 Chessex P, Laborie S, Lavoie JC et al. Photoprotection of solutions of parenteral nutrition decreases the infused load as well as the urinary excretion of peroxides in premature infants. Semin Perinatol 2001; 25: 55-59
  • 201 Yang CF, Duro D, Zurakowski D et al. High prevalence of multiple micronutrient deficiencies in children with intestinal failure: a longitudinal study. J Pediatr 2011; 159: 39-44.e1
  • 202 Ubesie AC, Kocoshis SA, Mezoff AG et al. Multiple micronutrient deficiencies among patients with intestinal failure during and after transition to enteral nutrition. J Pediatr 2013; 163: 1692-1696
  • 203 Van Winckel M, De Bruyne R, Van De Velde S et al. Vitamin K, an update for the paediatrician. Eur J Pediatr 2009; 168: 127-134
  • 204 Clarke P. Vitamin K prophylaxis for preterm infants. Early Hum Dev 2010; 86 (Suppl. 01) 17-20
  • 205 Greer FR. Vitamin K deficiency and hemorrhage in infancy. Clin Perinatol 1995; 22: 759-777
  • 206 Greer FR. Vitamin metabolism and requirements in the micropremie. Clin Perinatol 2000; 27: 95-118, vi
  • 207 American Academy of Pediatrics. Policy Statement – AAP publications retired and reaffirmed. Pediatrics 2009; 124: 845-1415 Epub 2009 Jul 27.
  • 208 American Academy of Pediatrics, Committee on Nutrition. Nutritional needs of preterm infants. Pediatric Nutrition Handbook. 5th. ed., Elk Grove Village: American Academy of Pediatrics; 2003
  • 209 Clarke P, Mitchell SJ, Wynn R et al. Vitamin K prophylaxis for preterm infants: a randomized, controlled trial of 3 regimens. Pediatrics 2006; 118: e1657-1666
  • 210 Loughnan PM, McDougall PN, Balvin H et al. Late onset haemorrhagic disease in premature infants who received intravenous vitamin K1. J Paediatr Child Health 1996; 32: 268-269
  • 211 Costakos DT, Greer FR, Love LA et al. Vitamin K prophylaxis for premature infants: 1 mg versus 0.5 mg. Am J Perinatol 2003; 20: 485-490
  • 212 Kumar D, Greer FR, Super DM et al. Vitamin K status of premature infants: implications for current recommendations. Pediatrics 2001; 108: 1117-1122
  • 213 Shearer MJ. Vitamin K in parenteral nutrition. Gastroenterology 2009; 137: S105-118
  • 214 Busfield A, Samuel R, McNinch A et al. Vitamin K deficiency bleeding after NICE guidance and withdrawal of Konakion Neonatal: British Paediatric Surveillance Unit study, 2006–2008. Arch Dis Child 2013; 98: 41-47
  • 215 Suchy JS, Sokol RJ, Balistreri WF. Liver disease in children. 3rd. ed., Cambridge: Cambridge University Press; 2007
  • 216 Darlow BA, Graham PJ. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birthweight infants. Cochrane Database Syst Rev 2011; (10) CD000501 DOI: CD000501.
  • 217 Moreira A, Caskey M, Fonseca R et al. Impact of providing vitamin A to the routine pulmonary care of extremely low birth weight infants. J Matern Fetal Neonatal Med 2012; 25: 84-88
  • 218 Mactier H, McCulloch DL, Hamilton R et al. Vitamin A supplementation improves retinal function in infants at risk of retinopathy of prematurity. J Pediatr 2012; 160: 954-9.e1
  • 219 Chabra S, Mayock DE, Zerzan J et al. Vitamin A status after prophylactic intramuscular vitamin A supplementation in extremely low birth weight infants. Nutr Clin Pract 2013; 28: 381-386
  • 220 Meyer S, Kronfeld K, Graber S et al. Vitamin A to prevent bronchopulmonary dysplasia: the NeoVitaA trial. J Matern Fetal Neonatal Med 2013; 26: 544-545
  • 221 Landman J, Sive A, Heese HD et al. Comparison of enteral and intramuscular vitamin A supplementation in preterm infants. Early Hum Dev 1992; 30: 163-170
  • 222 Wardle SP, Hughes A, Chen S et al. Randomised controlled trial of oral vitamin A supplementation in preterm infants to prevent chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2001; 84: F9-F13
  • 223 Haas C, Genzel-Boroviczeny O, Koletzko B. Losses of vitamin A and E in parenteral nutrition suitable for premature infants. Eur J Clin Nutr 2002; 56: 906-912
  • 224 Hanson C, Thoene M, Wagner J et al. Parenteral nutrition additive shortages: the short-term, long-term and potential epigenetic implications in premature and hospitalized infants. Nutrients 2012; 4: 1977-1988
  • 225 Greer FR. Vitamins A, E, and K. In: Tsang RC, Uauy R, Koletzko B, Zlotkin SH, eds. Nutrition of the preterm infant. Scientific basis and practical guidelines. 2nd. ed., Cincinnati: Dig Educational Publishing Inc; 2005
  • 226 Uriu-Adams JY, Obican SG, Keen CL. Vitamin D and maternal and child health: overview and implications for dietary requirements. Birth Defects Res C Embryo Today 2013; 99: 24-44
  • 227 Hypponen E, Laara E, Reunanen A et al. Intake of vitamin D and risk of type 1 diabetes: a birth-cohort study. Lancet 2001; 358: 1500-1503
  • 228 Braegger C, Campoy C, Colomb V et al. Vitamin D in the healthy European paediatric population. J Pediatr Gastroenterol Nutr 2013; 56: 692-701
  • 229 Abrams SA. Committee on Nutrition. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013; 131: e1676-1683
  • 230 Kislal FM, Dilmen U. Effect of different doses of vitamin D on osteocalcin and deoxypyridinoline in preterm infants. Pediatr Int 2008; 50: 204-207
  • 231 Wagner CL, Greer FR. American Academy of Pediatrics Section on Breastfeeding, American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008; 122: 1142-1152
  • 232 Monangi N, Slaughter JL, Dawodu A et al. Vitamin D status of early preterm infants and the effects of vitamin D intake during hospital stay. Arch Dis Child Fetal Neonatal Ed 2014; 99: F166-168
  • 233 Bhatia J, Griffin I, Anderson D et al. Selected macro/micronutrient needs of the routine preterm infant. J Pediatr 2013; 162: S48-55
  • 234 Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr 2012; 3: 353-361
  • 235 Pramyothin P, Holick MF. Vitamin D supplementation: guidelines and evidence for subclinical deficiency. Curr Opin Gastroenterol 2012; 28: 139-150
  • 236 Au LE, Rogers GT, Harris SS et al. Associations of vitamin D intake with 25-hydroxyvitamin D in overweight and racially/ethnically diverse US children. J Acad Nutr Diet 2013; 113: 1511-1516
  • 237 Abrams SA, Coss-Bu JA, Tiosano D. Vitamin D: effects on childhood health and disease. Nat Rev Endocrinol 2013; 9: 162-170
  • 238 Brion LP, Bell EF, Raghuveer TS. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2003; (03) CD003665
  • 239 Brion LP, Bell EF, Raghuveer TS et al. What is the appropriate intravenous dose of vitamin E for very-low-birth-weight infants?. J Perinatol 2004; 24: 205-207
  • 240 Brion LP, Bell EF, Raghuveer TS. Variability in the dose of intravenous vitamin E given to very low birth weight infants. J Perinatol 2005; 25: 139-142
  • 241 Jochum F, Fuchs A, Cser A et al. Trace mineral status of full-term infants fed human milk, milk-based formula or partially hydrolysed whey protein formula. Analyst 1995; 120: 905-909
  • 242 Aggett PJ, Fairweather-Tait S. Adaptation to high and low copper intakes: its relevance to estimated safe and adequate daily dietary intakes. Am J Clin Nutr 1998; 67: 1061S-1063S
  • 243 Ehrenkranz RA, Gettner PA, Nelli CM et al. Zinc and copper nutritional studies in very low birth weight infants: comparison of stable isotopic extrinsic tag and chemical balance methods. Pediatr Res 1989; 26: 298-307
  • 244 Vuori E. Intake of copper, iron, manganese and zinc by healthy, exclusively-breast-fed infants during the first 3 months of life. Br J Nutr 1979; 42: 407-411
  • 245 Aggett PJ. Trace elements of the micropremie. Clin Perinatol 2000; 27: 119-29, vi
  • 246 Burjonrappa SC, Miller M. Role of trace elements in parenteral nutrition support of the surgical neonate. J Pediatr Surg 2012; 47: 760-771
  • 247 Wong T. Parenteral trace elements in children: clinical aspects and dosage recommendations. Curr Opin Clin Nutr Metab Care 2012; 15: 649-656
  • 248 Bausen C, Jochum F, Fusch C. Perinatale Dermatitis durch Zinkmangel bei einem ehemaligen Frühgeborenen (25+1 SSW). In: Anke M, Müller R, Schäfer U, Stoeppler M, eds. Mengen und Spurenelemente. Leipzig: Verlag Harald Schubert; 2002
  • 249 Jochum F, Lombeck I. Genetic Defects Related to Metals Other Than Copper. In: Fernandes J, Saudubray JM, eds. Inborn Metabolic Diseases – Diagnosis and Treatment. Berlin: Springer Verlag; 2000
  • 250 Koletzko B, Bretschneider A, Bremer HJ. Fatty acid composition of plasma lipids in acrodermatitis enteropathica before and after zinc supplementation. Eur J Pediatr 1985; 143: 310-314
  • 251 Mack D, Koletzko B, Cunnane S et al. Acrodermatitis enteropathica with normal serum zinc levels: diagnostic value of small bowel biopsy and essential fatty acid determination. Gut 1989; 30: 1426-1429
  • 252 Barbarot S, Chantier E, Kuster A et al. Symptomatic acquired zinc deficiency in at-risk premature infants: high dose preventive supplementation is necessary. Pediatr Dermatol 2010; 27: 380-383
  • 253 Shah MD, Shah SR. Nutrient deficiencies in the premature infant. Pediatr Clin North Am 2009; 56: 1069-1083
  • 254 Darlow BA, Winterbourn CC, Inder TE et al. The effect of selenium supplementation on outcome in very low birth weight infants: a randomized controlled trial. The New Zealand Neonatal Study Group. J Pediatr 2000; 136: 473-480
  • 255 Suchner U, Heyland DK, Peter K. Immune-modulatory actions of arginine in the critically ill. Br J Nutr 2002; 87 (Suppl. 01) S121-132
  • 256 Neu J, Roig JC, Meetze WH et al. Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J Pediatr 1997; 131: 691-699
  • 257 Poindexter BB, Ehrenkranz RA, Stoll BJ et al. Parenteral glutamine supplementation does not reduce the risk of mortality or late-onset sepsis in extremely low birth weight infants. Pediatrics 2004; 113: 1209-1215
  • 258 Li ZH, Wang DH, Dong M. Effect of parenteral glutamine supplementation in premature infants. Chin Med J (Engl) 2007; 120: 140-144
  • 259 Moe-Byrne T, Wagner JV, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2012; 3 CD001457
  • 260 Wagner JV, Moe-Byrne T, Grover Z et al. Glutamine supplementation for young infants with severe gastrointestinal disease. Cochrane Database Syst Rev 2012; 7 CD005947
  • 261 Amin HJ, Zamora SA, McMillan DD et al. Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J Pediatr 2002; 140: 425-431
  • 262 Polycarpou E, Zachaki S, Tsolia M et al. Enteral L-arginine supplementation for prevention of necrotizing enterocolitis in very low birth weight neonates: a double-blind randomized pilot study of efficacy and safety. JPEN J Parenter Enteral Nutr 2013; 37: 617-622
  • 263 Magnusson G, Boberg M, Cederblad G et al. Plasma and tissue levels of lipids, fatty acids and plasma carnitine in neonates receiving a new fat emulsion. Acta Paediatr 1997; 86: 638-644
  • 264 Gnigler M, Schlenz B, Kiechl-Kohlendorfer U et al. Improved Weight Gain in Very-low-birth-weight Infants After the Introduction of a Self-created Computer Calculation Program for Individualized Parenteral Nutrition. Pediatr Neonatol 2014; 55: 41-47
  • 265 Huston RK, Markell AM, McCulley EA et al. Computer programming: quality and safety for neonatal parenteral nutrition orders. Nutr Clin Pract 2013; 28: 515-521
  • 266 Wilson DC, Fox GF, Ohlsson A. Meta-analyses of effects of early or late introduction of intravenous lipids to preterm infants on mortality and chronic lung disease. J Pediatr Gastroenterol Nutr 1998; 26: 599-609
  • 267 Bell EF, Warburton D, Stonestreet BS et al. High-volume fluid intake predisposes premature infants to necrotising enterocolitis. Lancet 1979; 2: 90
  • 268 Bell EF, Oh W. Water requirement of premature newborn infants. Acta Paediatr Scand Suppl 1983; 305: 21-26
  • 269 Bell EF, Acarregui MJ. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2000; (02) CD000503
  • 270 Hartnoll G, Betremieux P, Modi N. Randomised controlled trial of postnatal sodium supplementation on body composition in 25 to 30 week gestational age infants. Arch Dis Child Fetal Neonatal Ed 2000; 82: F24-28
  • 271 Kennedy KA, Tyson JE, Chamnanvanikij S. Early versus delayed initiation of progressive enteral feedings for parenterally fed low birth weight or preterm infants. Cochrane Database Syst Rev 2000; (02) CD001970
  • 272 Tyson JE, Kennedy KA. Minimal enteral nutrition for promoting feeding tolerance and preventing morbidity in parenterally fed infants. Cochrane Database Syst Rev 2000; (02) CD000504
  • 273 Putet G, Senterre J, Rigo J et al. Energy balance and composition of body weight. Biol Neonate 1987; 52 (Suppl. 01) 17-24
  • 274 Shah PS, Ng E, Sinha AK. Heparin for prolonging peripheral intravenous catheter use in neonates. Cochrane Database Syst Rev 2002; (04) CD002774
  • 275 Shah PS, Shah VS. Continuous heparin infusion to prevent thrombosis and catheter occlusion in neonates with peripherally placed percutaneous central venous catheters. Cochrane Database Syst Rev 2008; (02) CD002772 DOI: CD002772.
  • 276 Krohn K, Babl J, Reiter K et al. Parenteral nutrition with standard solutions in paediatric intensive care patients. Clin Nutr 2005; 24: 274-280
  • 277 Gamsjager T, Brenner L, Schaden E et al. Cost analysis of two approaches to parenteral nutrition in critically ill children. Pediatr Crit Care Med 2009; 10: 163-165
  • 278 Lenclen R, Crauste-Manciet S, Narcy P et al. Assessment of implementation of a standardized parenteral formulation for early nutritional support of very preterm infants. Eur J Pediatr 2006; 165: 512-518
  • 279 Smolkin T, Diab G, Shohat I et al. Standardized versus individualized parenteral nutrition in very low birth weight infants: a comparative study. Neonatology 2010; 98: 170-178
  • 280 Suchner U, Senftleben U, Askanazi J et al. The non-energetic importance of enteral nutrition of critically ill patients. Infusionsther Transfusionsmed 1993; 20: 38-46
  • 281 Fallon EM, Nehra D, Potemkin AK et al. A.S.P.E.N. clinical guidelines: nutrition support of neonatal patients at risk for necrotizing enterocolitis. JPEN J Parenter Enteral Nutr 2012; 36: 506-523
  • 282 Pinelli J, Symington A. Non-nutritive sucking for promoting physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev 2001; (03) CD001071
  • 283 Pohlandt F. Bone mineral deficiency as the main factor of dolichocephalic head flattening in very-low-birth-weight infants. Pediatr Res 1994; 35: 701-703
  • 284 Pohlandt F. Hypothesis: myopia of prematurity is caused by postnatal bone mineral deficiency. Eur J Pediatr 1994; 153: 234-236
  • 285 Mitchell SM, Rogers SP, Hicks PD et al. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr 2009; 9: 47/1-7
  • 286 Pereira-da-Silva L, Costa A, Pereira L et al. Early high calcium and phosphorus intake by parenteral nutrition prevents short-term bone strength decline in preterm infants. J Pediatr Gastroenterol Nutr 2011; 52: 203-209
  • 287 Bonsante F, Iacobelli S, Latorre G et al. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants – it is time to change the composition of the early parenteral nutrition. PLoS One 2013; 8: e72880
  • 288 Karlen J, Aperia A, Zetterstrom R. Renal excretion of calcium and phosphate in preterm and term infants. J Pediatr 1985; 106: 814-819
  • 289 Pohlandt F. Prevention of postnatal bone demineralization in very low-birth-weight infants by individually monitored supplementation with calcium and phosphorus. Pediatr Res 1994; 35: 125-129
  • 290 Backstrom MC, Kouri T, Kuusela AL et al. Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr 2000; 89: 867-873
  • 291 Ronchera-oms CL, Allwood MC, Hardy G. Organic phosphates in parenteral nutrition: pouring fresh water into an old bucket. Nutrition 1996; 12: 388-389
  • 292 Tural E, Meral C, Suleymanoglu S et al. Renal zinc clearance/glomerular filtration rate ratio as an indicator of marginal zinc deficiency associated with iron deficiency in childhood. J Am Coll Nutr 2010; 29: 107-112
  • 293 Giapros V, Tsoni C, Challa A et al. Renal function and kidney length in preterm infants with nephrocalcinosis: a longitudinal study. Pediatr Nephrol 2011; 26: 1873-1880
  • 294 Ubesie AC, Heubi JE, Kocoshis SA et al. Vitamin D deficiency and low bone mineral density in pediatric and young adult intestinal failure. J Pediatr Gastroenterol Nutr 2013; 57: 372-376
  • 295 Shulman RJ, Phillips S. Parenteral nutrition in infants and children. J Pediatr Gastroenterol Nutr 2003; 36: 587-607
  • 296 Decsi T, Molnar D, Klujber L. Lipid levels in very low birthweight preterm infants. Acta Paediatr Scand 1990; 79: 577-580
  • 297 Connelly PW, Maguire GF, Vezina C et al. Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Importance of particle number and noncompetitive inhibition by particles with low triglyceride content. J Biol Chem 1994; 269: 20554-20560
  • 298 Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung. Referenzwerte für die Nährstoffzufuhr. Frankfurt am Main: Umschau Braus Verlag; 2000
  • 299 Jochum F Hrsg. Ernährungsmedizin Pädiatrie. 2nd. ed., Heidelberg: Springer Verlag; 2013