Informationen aus Orthodontie & Kieferorthopädie 2014; 46(01): 3-7
DOI: 10.1055/s-0034-1371809
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Zahn-Agenesie – aktueller Stand der genetischen und klinischen Perspektive

Tooth Agenesis – Current Perspective of Recent Genetics and Clinical Implications
X. Rausch-Fan
1   Abteilung für Kieferorthopädie, Bernhard-Gottlieb-Universitätszahnklinik Wien, Medizinische Universität Wien, Österreich
3   Kompetenzzentrum für Orale Biologie und Immunologie, Bernhard-Gottlieb-Universitätszahnklinik Wien, Medizinische Universität Wien, Österreich
,
B. Özdemir
2   Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
3   Kompetenzzentrum für Orale Biologie und Immunologie, Bernhard-Gottlieb-Universitätszahnklinik Wien, Medizinische Universität Wien, Österreich
,
A. Čelar
1   Abteilung für Kieferorthopädie, Bernhard-Gottlieb-Universitätszahnklinik Wien, Medizinische Universität Wien, Österreich
› Author Affiliations
Further Information

Publication History

Publication Date:
03 April 2014 (online)

Zusammenfassung

Die Zahnagenesie ist der am häufigsten vorkommende genetische Defekt der Zahnentwicklung. Chromosomale Schäden oder Mutationen in den für die Zahnentwicklung verantwortlichen Genen können zu verschiedenen Formen der Agenesie führen. Sie kann als isoliertes, symptomloses Zustandsbild auftreten, aber auch mit einer Anzahl von systemischen und organischen Syndromen assoziiert sein. In der täglichen Zahnarztpraxis ist für die Behandlung der Zahnagenesie eine multidisziplinäre Sichtweise angebracht. Jüngste Studien zeigen, dass ein ätiologischer Zusammenhang mit bestimmten Krebsformen besteht. Im vorliegenden Artikel soll die Thematik der Zahnagenesie auf Basis des derzeitigen genetischen und klinischen Wissensstandes erörtert werden.

Abstract

Tooth agenesis is the most common abnormality of the dental development. Chromosomal defects or mutations of the genes responsible for tooth development and/or signaling pathways can result in different forms of agenesis. It may be present as an isolated non-syndromic condition, or its presence may be associated with a number of systemic or organic manifestation syndromes. Multidisciplinary management of tooth agenesis is important for the daily dental practice. Moreover, recent studies indicate that there may exist a common genetic etiology with certain forms of cancers. In the present article we aimed to briefly review tooth agenesis within the current perspective of recent genetic and clinical informations.

 
  • Literatur

  • 1 Shapiro SD, Farrington FH. A potpourri of syndromes with anomalies of dentition. In Dentition genetic effects. Birth defects: Original Article Series. RJ J. (ed.). March of Dimes Birth Defects Foundation; New York: 1983: 129-140
  • 2 Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 2000; 117: 650-656
  • 3 Durstberger G, Celar A, Watzek G. Implant-surgical and prosthetic rehabilitation of patients with multiple dental aplasia: a clinical report. Int J Oral Maxillofac Implants 1999; 14: 417-423
  • 4 Kouskoura T, Fragou N, Alexiou M et al The genetic basis of cranio­facial and dental abnormalities. Schweiz Monatsschr Zahnmed 2011; 121: 636-646
  • 5 De Coster PJ, Marks LA, Martens LC et al. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2009; 38: 1-17
  • 6 Galluccio G, Castellano M, La Monaca C. Genetic basis of non-syndromic anomalies of human tooth number. Arch Oral Biol 2012; 57: 918-930
  • 7 Boeira Junior BR, Echeverrigaray S. Dentistry and molecular biology: a promising field for tooth agenesis management. Tohoku J Exp Med 2012; 226: 243-249
  • 8 Mostowska A, Biedziak B, Jagodzinski PP. Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. J Hum Genet 2006; 51: 262-266
  • 9 Peres RC, Scarel-Caminaga RM, do Espírito Santo AR et al. Association between PAX-9 promoter polymorphisms and hypodontia in humans. Arch Oral Biol 2005; 50: 861-871
  • 10 Vieira AR, Meira R, Modesto A et al. MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J Dent Res 2004; 83: 723-727
  • 11 Vieira AR, Modesto A, Meira R et al. Interferon regulatory factor 6 (IRF6) and fibroblast growth factor receptor 1 (FGFR1) contribute to human tooth agenesis. Am J Med Genet A 2007; 143: 538-545
  • 12 Ruf S, Klimas D, Hönemann M et al. Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 2013; 74: 295-308
  • 13 Croen LA, Shaw GM, Wasserman CR et al. Racial and ethnic variations in the prevalence of orofacial clefts in California, 1983–1992. Am J Med Genet 1998; 79: 42-47
  • 14 Kondo S, Schutte BC, Richardson RJ et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet 2002; 32: 285-289
  • 15 van den Boogaard MJ, Dorland M, Beemer FA et al. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 2000; 24: 342-343
  • 16 Zucchero TM, Cooper ME, Maher BS et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med 2004; 351: 769-780
  • 17 Kim HJ, Rice DP, Kettunen PJ et al. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 1998; 125: 1241-1251
  • 18 Johnson D, Iseki S, Wilkie AO et al. Expression patterns of Twist and Fgfr1, -2 and -3 in the developing mouse coronal suture suggest a key role for twist in suture initiation and biogenesis. Mech Dev 2000; 91: 341-345
  • 19 Kreiborg S, Cohen Jr MM. The oral manifestations of Apert syndrome. J Craniofac Genet Dev Biol 1992; 12: 41-48
  • 20 Ota M, Iseki NM, Nakahara S et al. Sonic Hedgehog and FGF signalling are important for tooth root development. European Cells and Materials 2007; 14: 45
  • 21 Hu D, Helms JA. The role of sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 1999; 126: 4873-4884
  • 22 Hardcastle Z, Mo R, Hui CC et al. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development 1998; 125: 2803-2811
  • 23 Dassule HR, Lewis P, Bei M et al. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 2000; 127: 4775-4785
  • 24 Nakatomi M, Morita I, Eto K et al. Sonic hedgehog signaling is important in tooth root development. J Dent Res 2006; 85: 427-431
  • 25 Niemann S, Zhao C, Pascu F et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet 2004; 74: 558-563
  • 26 Yamaguchi TP, Takada S, Yoshikawa Y et al. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 1999; 13: 3185-3190
  • 27 Juriloff DM, Harris MJ, McMahon AP et al. Wnt9b is the mutated gene involved in multifactorial nonsyndromic cleft lip with or without cleft palate in A/WySn mice, as confirmed by a genetic complementation test. Birth Defects.. Res A Clin Mol Teratol 2006; 76: 574-579
  • 28 Sarkar L, Sharpe PT. Inhibition of Wnt signaling by exogenous Mfrzb1 protein affects molar tooth size. J Dent Res 2000; 79: 920-925
  • 29 Li WY, Dudas M, Kaartinen V. Signaling through Tgf-beta type I receptor Alk5 is required for upper lip fusion. Mech Dev 2008; 125: 874-882
  • 30 Kaartinen V, Voncken JW, Shuler C et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995; 11: 415-421
  • 31 Kaartinen V, Cui XM, Heisterkamp N et al. Transforming growth factor-beta3 regulates transdifferentiation of medial edge epithelium during palatal fusion and associated degradation of the basement membrane. Dev Dyn 1997; 209: 255-260
  • 32 Ashique AM, Fu K, Richman JM. Endogenous bone morphogenetic proteins regulate outgrowth and epithelial survival during avian lip fusion. Development 2002; 129: 4647-4660
  • 33 Wu P, Jiang TX, Suksaweang S et al. Molecular shaping of the beak. Science 2004; 305: 1465-1466
  • 34 Plikus MV, Zeichner-David M, Mayer JA et al. Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 2005; 7: 440-457
  • 35 Chalothorn LA, Beeman CS, Ebersole JL et al. Hypodontia as a risk marker for epithelial ovarian cancer: a case-controlled study. J Am Dent Assoc 2008; 139: 163-169
  • 36 Küchler EC, Lips A, Tannure PN et al. Tooth agenesis association with self-reported family history of cancer. J Dent Res 2013; 92: 149-155
  • 37 Hahn H, Christiansen J, Wicking C et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem 1996; 271: 12125-12128
  • 38 Panetta NJ, Gupta DM, Slater BJ et al. Tissue engineering in cleft palate and other congenital malformations. Pediatr Res 2008; 63: 545-551