Aktuelle Neurologie 2014; 41(04): 239-247
DOI: 10.1055/s-0034-1374583
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Genetik und Neurochemische Biomarker bei Amyotropher Lateralsklerose und Frontotemporaler Lobärdegeneration

Genetics and Neurochemical Biomarkers in ALS and FTLD
E. Feneberg
1   Klinik für Neurologie, Universitätsklinikum Ulm
,
A. Hübers
1   Klinik für Neurologie, Universitätsklinikum Ulm
,
J. H. Weishaupt
1   Klinik für Neurologie, Universitätsklinikum Ulm
,
A. Ludolph
1   Klinik für Neurologie, Universitätsklinikum Ulm
,
M. Otto
1   Klinik für Neurologie, Universitätsklinikum Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
16 May 2014 (online)

Zusammenfassung

Die Amyotrophe Lateralsklerose (ALS) und die Gruppe der Frontotemporalen Lobärdegenera­tionen (FTLD) sind progredient neurodegenera­tive Erkrankungen, die bei der ALS zu einer schweren kontinuierlich fortscheitenden Lähmung der Muskulatur und schließlich respiratorischer Insuffizienz und bei der FTLD zu einer zunehmenden Störung des Verhaltens, der Sprache und in manchen Fällen der Motorik führt. In den letzten Jahren rückte die klinische Überlappung der beiden Krankheitsbilder wieder in den Vordergrund, nachdem man aggregiertes TDP-43 im Zytoplasma von Nervenzellen als gemeinsame histopathologische Veränderung gefunden hat. Es wurde die Hypothese formuliert, dass es sich bei beiden Krankheitsbildern um die Pole eines sowohl klinischen als auch pathophysiologischen Kontinuums handelt. Zunächst konnten als möglicher molekularer Mechanismus Mutationen im TDP-43-Gen nachgewiesen werden. Weiterhin wurde eine pathologische Repeat-Expansion auf Chromosom 9 – C9orf72 – beschrieben, die in Europa mit etwa 25 bis 30% aller genetisch bedingten ALS-Erkrankungen und etwa 11% aller genetisch bedingten FTLD-Erkrankungen assoziiert ist. Interessant ist, dass auch bis zu 20% der zunächst sporadisch Erkrankten eine C9orf72 Expansion aufweisen. Bei asymptomatischen Genträgern und bei sporadischen Formen der Erkrankung bereitet vor allem im Frühstadium der Erkrankungen das rechtzeitige Erkennen und richtige Einordnen der Symptome von ALS und FTLD Schwierigkeiten. Zur besseren differen­zialdiagnostischen und prognostischen Einschätzung sind daher zuverlässige Biomarker nötig.

Abstract

Both amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are progressive neurodegenerative diseases. In ALS, neurodegeneration results in progressive paralysis of muscles and finally in respiratory insufficiency. FTLD, on the other hand, progressively affects behavior, speech, and in some cases the motor system. Over recent years, some clinical overlapping of these syndromes with their common histopathology of aggregated TDP-43 in the cytoplasm of neurons resulted in the hypothesis that both syndromes are parts of a clinical as well as pathophysiological continuum. As a first step, mutations of the TDP-43 gene have been identified as possible molecular mechanism. Furthermore, a pathological repeat expansion of chromosome 9 – C9orf72 – is associated with 25–30 percent of all genetically determined cases of ALS and about 11 percent of the FTLD cases in Europe. However, 20% of the sporadic cases also have a C9orf72 expansion. Particularly in asymptomatic mutation carriers and in sporadic cases, the diagnosis at an early stage of the disease and reliable classification of the symptoms of ALS and FTLD is usually difficult. Therefore, it would be desirable to develop reliable and specific biomarkers that allow valid diagnosis and evaluation of prognosis.

 
  • Literatur

  • 1 Brooks BR, Miller RG, Swash M et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1: 293-299
  • 2 Rascovsky K, Hodges JR, Knopman D et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134: 2456-2477
  • 3 Gorno-Tempini ML, Hillis AE, Weintraub S et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76: 1006-1014
  • 4 Mesulam M, Wicklund A, Johnson N et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 2008; 63: 709-719
  • 5 Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010; 24: 375-398
  • 6 Lomen-Hoerth C. Characterization of amyotrophic lateral sclerosis and frontotemporal dementia. Dement Geriatr Cogn Disord 2004; 17: 337-341
  • 7 Taylor LJ, Brown RG, Tsermentseli S et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis?. J Neurol Neurosurg Psychiatry 2013; 84: 494-498
  • 8 Van Langenhove T, van der Zee J, Van Broeckhoven C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012; 44: 817-828
  • 9 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133
  • 10 Sreedharan J, Blair IP, Tripathi VB et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319: 1668-1672
  • 11 Kabashi E, Valdmanis PN, Dion P et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008; 4: 572-574
  • 12 Mackenzie IR, Neumann M, Bigio EH et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 2010; 119: 1-4
  • 13 Halliday G, Bigio EH, Cairns NJ et al. Mechanisms of disease in frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathol 2012; 124: 373-382
  • 14 Dormann D, Rodde R, Edbauer D et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 2010; 29: 2841-2857
  • 15 Goldman JS, Adamson J, Karydas A et al. New genes, new dilemmas: FTLD genetics and its implications for families. Am J Alzheimers Dis Other Demen 2007; 22: 507-515
  • 16 Borroni B, Archetti S, Del Bo R et al. TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Res 2010; 13: 509-517
  • 17 Gunnarsson LG, Dahlbom K, Strandman E. Motor neuron disease and dementia reported among 13 members of a single family. Acta Neurol Scand 1991; 84: 429-433
  • 18 Vance C, Al-Chalabi A, Ruddy D et al. Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2-21.3. Brain 2006; 129: 868-876
  • 19 Pearson JP, Williams NM, Majounie E et al. Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p. J Neurol 2011; 258: 647-655
  • 20 Laaksovirta H, Peuralinna T, Schymick JC et al. Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurol 2010; 9: 978-985
  • 21 Rollinson S, Mead S, Snowden J et al. Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis. Neurobiol Aging 2011; 32: 758 e1-e7
  • 22 DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245-256
  • 23 Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257-268
  • 24 Beck J, Poulter M, Hensman D et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 2013; 92: 345-353
  • 25 Valdmanis PN, Belzil VV, Lee J et al. A mutation that creates a pseudoexon in SOD1 causes familial ALS. Ann Hum Genet 2009; 73: 652-657
  • 26 Andersen PM, Sims KB, Xin WW et al. Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes. Amyotroph Lateral Scler Other Motor Neuron Disord 2003; 4: 62-73
  • 27 Zinman L, Liu HN, Sato C et al. A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology 2009; 72: 1153-1159
  • 28 Birve A, Neuwirth C, Weber M et al. A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis. Hum Mol Genet 2010; 19: 4201-4206
  • 29 Gurney ME, Pu H, Chiu AY et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264: 1772-1775
  • 30 Reaume AG, Elliott JL, Hoffman EK et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 1996; 13: 43-47
  • 31 Daoud H, Valdmanis PN, Kabashi E et al. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J Med Genet 2009; 46: 112-114
  • 32 Kuhnlein P, Sperfeld AD, Vanmassenhove B et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch Neurol 2008; 65: 1185-1189
  • 33 Kirby J, Goodall EF, Smith W et al. Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis. Neurogenetics 2010; 11: 217-225
  • 34 Benajiba L, Le Ber I, Camuzat A et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 2009; 65: 470-473
  • 35 Kovacs GG, Murrell JR, Horvath S et al. TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 2009; 24: 1843-1847
  • 36 Borroni B, Bonvicini C, Alberici A et al. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 2009; 30: E974-E983
  • 37 Vance C, Rogelj B, Hortobagyi T et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323: 1208-1211
  • 38 Kwiatkowski Jr TJ, Bosco DA, Leclerc AL et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323: 1205-1208
  • 39 Van Langenhove T, van der Zee J, Sleegers K et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 2010; 74: 366-371
  • 40 Millecamps S, Salachas F, Cazeneuve C et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J Med Genet 2010; 47: 554-560
  • 41 Erminio F, Buchthal F, Rosenfalck P. Motor unit territory and muscle fiber concentration in paresis due to peripheral nerve injury and anterior horn cell involvement. Neurology 1959; 9: 657-671
  • 42 Costa J, Swash M, de Carvalho M. Awaji criteria for the diagnosis of amyotrophic lateral sclerosis:a systematic review. Arch Neurol 2012; 69: 1410-1416
  • 43 Shefner JM, Gooch CL. Motor unit number estimation. Phys Med Rehabil Clin N Am 2003; 14: 243-260
  • 44 Rutkove SB, Caress JB, Cartwright MS et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler 2012; 13: 439-445
  • 45 Kassubek J, Ludolph AC, Muller HP. Neuroimaging of motor neuron diseases. Ther Adv Neurol Disord 2012; 5: 119-127
  • 46 Hecht MJ, Fellner F, Fellner C et al. MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2-, T1- and proton-density-weighted images. J Neurol Sci 2001; 186: 37-44
  • 47 Kassubek J, Unrath A, Huppertz HJ et al. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI. Amyotroph Lateral Scler Other Motor Neuron Disord 2005; 6: 213-220
  • 48 Muller HP, Lule D, Unrath A et al. Complementary image analysis of diffusion tensor imaging and 3-dimensional t1-weighted imaging: white matter analysis in amyotrophic lateral sclerosis. J Neuroimaging 2011; 21: 24-33
  • 49 Sach M, Winkler G, Glauche V et al. Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 2004; 127: 340-350
  • 50 Sage CA, Van Hecke W, Peeters R et al. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Hum Brain Mapp 2009; 30: 3657-3675
  • 51 Lule D, Ludolph AC, Kassubek J. MRI-based functional neuroimaging in ALS: an update. Amyotroph Lateral Scler 2009; 10: 258-268
  • 52 Turner MR, Grosskreutz J, Kassubek J et al. Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. Lancet Neurol 2011; 10: 400-403
  • 53 Turner MR, Kiernan MC, Leigh PN et al. Biomarkers in amyotrophic lateral sclerosis. Lancet Neurol 2009; 8: 94-109
  • 54 Rabinovici GD, Seeley WW, Kim EJ et al. Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. Am J Alzheimers Dis Other Demen 2007; 22: 474-488
  • 55 Dukart J, Perneczky R, Forster S et al. Reference cluster normalization improves detection of frontotemporal lobar degeneration by means of FDG-PET. PLoS One 2013; 8: e55415
  • 56 Kipps CM, Davies RR, Mitchell J et al. Clinical significance of lobar atrophy in frontotemporal dementia: application of an MRI visual rating scale. Dement Geriatr Cogn Disord 2007; 23: 334-342
  • 57 Frisch S, Dukart J, Vogt B et al. Dissociating memory networks in early Alzheimer’s disease and frontotemporal lobar degeneration – a combined study of hypometabolism and atrophy. PLoS One 2013; 8: e55251
  • 58 Woost TB, Dukart J, Frisch S et al. Neural correlates of the DemTect in Alzheimer’s disease and frontotemporal lobar degeneration – A combined MRI & FDG-PET study. Neuroimage Clin 2013; 2: 746-758
  • 59 Otto M, Bowser R, Turner M et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. Amyotroph Lateral Scler 2012; 13: 1-10
  • 60 Steinacker P, Hendrich C, Sperfeld AD et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 2008; 65: 1481-1487
  • 61 Kasai T, Tokuda T, Ishigami N et al. Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 2009; 117: 55-62
  • 62 Foulds P, McAuley E, Gibbons L et al. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 2008; 116: 141-146
  • 63 Noto Y, Shibuya K, Sato Y et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 2011; 12: 140-143
  • 64 Foulds PG, Davidson Y, Mishra M et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 2009; 118: 647-658
  • 65 Riemenschneider M, Wagenpfeil S, Diehl J et al. Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002; 58: 1622-1628
  • 66 Pijnenburg YA, Schoonenboom SN, Mehta PD et al. Decreased cerebrospinal fluid amyloid beta (1-40) levels in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 2007; 78: 735-737
  • 67 Steinacker P, Hendrich C, Sperfeld AD et al. Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. J Neural Transm 2009; 116: 1169-1178
  • 68 Verwey NA, Kester MI, van der Flier WM et al. Additional value of CSF amyloid-beta 40 levels in the differentiation between FTLD and control subjects. J Alzheimers Dis 2010; 20: 445-452
  • 69 Bibl M, Mollenhauer B, Lewczuk P et al. Cerebrospinal Fluid Tau, p-Tau 181 and Amyloid-beta(38/40/42) in Frontotemporal Dementias and Primary Progressive Aphasias. Dement Geriatr Cogn Disord 2011; 31: 37-44
  • 70 Bibl M, Mollenhauer B, Wolf S et al. Reduced CSF carboxyterminally truncated Abeta peptides in frontotemporal lobe degenerations. J Neural Transm 2007; 114: 621-628
  • 71 Koopman K, Le Bastard N, Martin JJ et al. Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P). Neurochem Int 2009; 55: 214-218
  • 72 Brunnstrom H, Rawshani N, Zetterberg H et al. Cerebrospinal fluid biomarker results in relation to neuropathological dementia diagnoses. Alzheimers Dement 2010; 6: 104-109
  • 73 Bian H, Van Swieten JC, Leight S et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008; 70: 1827-1835
  • 74 Irwin DJ, McMillan CT, Toledo JB et al. Comparison of cerebrospinal fluid levels of tau and Abeta 1-42 in Alzheimer disease and frontotemporal degeneration using 2 analytical platforms. Arch Neurol 2012; 69: 1018-1025
  • 75 Cohen TJ, Guo JL, Hurtado DE et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2011; 2: 252
  • 76 Borroni B, Malinverno M, Gardoni F et al. Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 2008; 71: 1796-1803
  • 77 Kuiperij HB, Verbeek MM. Diagnosis of progressive supranuclear palsy: can measurement of tau forms help?. Neurobiol Aging 2012; 33: 204 e17-e18
  • 78 Brettschneider J, Petzold A, Sussmuth SD et al. Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology 2006; 66: 852-866
  • 79 Ganesalingam J, An J, Shaw CE et al. Combination of neurofilament heavy chain and complement C3 as CSF biomarkers for ALS. J Neurochem 2011; 117: 528-537
  • 80 Mitchell RM, Freeman WM, Randazzo WT et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 2009; 72: 14-19
  • 81 Petzold A, Altintas A, Andreoni L et al. Neurofilament ELISA validation. J Immunol Methods 2010; 352: 23-31
  • 82 Lehnert S, Costa J, de Carvalho M et al. Multicenter quality control evaluation of different biomarker candidates for amyotrophic lateral sclerosis. amyotroph Lateral Scler 2014; Feb 28 Epub ahead of print
  • 83 Ghidoni R, Benussi L, Glionna M et al. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 2008; 71: 1235-1239
  • 84 Philips T, De Muynck L, Thu HN et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol 2010; 69: 1191-1200
  • 85 Ryberg H, An J, Darko S et al. Discovery and verification of amyotrophic lateral sclerosis biomarkers by proteomics. Muscle Nerve 2010; 42: 104-111
  • 86 Wilson ME, Boumaza I, Lacomis D et al. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 2010; 5: e15133
  • 87 Carrette O, Burkhard PR, Hughes S et al. Truncated cystatin C in cerebrospiral fluid: Technical [corrected] artefact or biological process?. Proteomics 2005; 5: 3060-3065