Flugmedizin · Tropenmedizin · Reisemedizin - FTR 2014; 21(2): 64-68
DOI: 10.1055/s-0034-1376161
Raumfahrtmedizin
© Georg Thieme Verlag Stuttgart · New York

Knochenstoffwechsel in der Schwerelosigkeit – Mechanismen und Maßnahmen gegen den Verlust von Knochenmasse

Bone metabolism in space – mechanism an measures for preventing the loss of bone mass
Petra Frings-Meuthen
1   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln (Leiter: Prof. Dr. Rupert Gerzer)
,
Jörn Rittweger
1   Institut für Luft- und Raumfahrtmedizin, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Köln (Leiter: Prof. Dr. Rupert Gerzer)
› Author Affiliations
Further Information

Publication History

Publication Date:
22 April 2014 (online)

Der Verlust von Knochenmasse im All stellt ein bekanntes Problem mit bedenklichem Ausmaß für Langzeitmissionen dar. Um den Verlust von Knochenmasse zu verhindern und geeignete Gegenmaßnahmen einzusetzen, ist das Verständnis der physiologischen Ursachen absolut unerlässlich. Die Flüssigkeitsverschiebung als früheste Theorie, die mechanische Anpassung des Knochens an veränderte Umgebungsbedingen sowie hormonelle und nutritive Einflüsse stellen wichtige Bereiche der Ursachenforschung dar. Der folgende Artikel gibt eine kurze Übersicht über die Inhalte dieser Theorien und betrachtet ihre aktuelle Bedeutung für die Entwicklung von Maßnahmen zur Verhinderung des Verlustes von Knochenmasse im All.

The loss of bone mass in space is a known problem with an alarming extent for long-term missions. The understanding of the physiological causes is absolutely essential in order to prevent the loss of bone mass and to employ appropriate countermeasures. Fluid shifts as the earliest theory, mechanical adaptation of bone to altered environmental conditions, hormonal and nutritional factors, are important areas of causal research. The following article gives a brief overview of the contents of these theories and considers its current importance for the development of measures preventing the loss of bone mass in space.

 
  • Literatur

  • 1 LeBlanc AD, Spector ER, Evans HJ, Sibonga JD. Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 2007; 7: 33-47
  • 2 Vico L, Collet P, Guignandon A et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 2000; 355: 1607-1611
  • 3 Turner CH. Site-specific skeletal effects of exercise: importance of interstitial fluid pressure. Bone 1999; 24: 161-162
  • 4 Leblanc AD, Schneider VS, Evans HJ et al. Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 1990; 5: 843-850
  • 5 Rittweger J, Frost HM, Schiessl H et al. Muscle atrophy and bone loss after 90 days' bed rest and the effects of flywheel resistive exercise and pamidronate: results from the LTBR study. Bone 2005; 36: 1019-1029
  • 6 Rittweger J, Goosey-Tolfrey VL, Cointry G, Ferretti JL. Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone 2010; 47: 511-518
  • 7 Rittweger J, Simunic B, Bilancio G et al. Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 2009; 44: 612-618
  • 8 Rittweger J, Winwood K, Seynnes O et al. Bone loss from the human distal tibia epiphysis during 24 days of unilateral lower limb suspension. J Physiol 2006; 577: 331-337
  • 9 Goemaere S, Van Laere M, De Neve P, Kaufman JM. Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 1994; 4: 138-143
  • 10 Berg HE, Dudley GA, Häggmark T et al. Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol (1985) 1991; 70: 1882-1885
  • 11 Frost HM. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 1081-1101
  • 12 Rubin CT, Lanyon LE. Kappa Delta Award paper. Osteoregulatory nature of mechanical stimuli: function as a determinant for adaptive remodeling in bone. J Orthop Res 1987; 5: 300-310
  • 13 Rittweger J, Felsenberg D. Recovery of muscle atrophy and bone loss from 90 days bed rest: results from a one-year follow-up. Bone 2009; 44: 214-224
  • 14 Cowin SC, Moss-Salentijn L, Moss ML. Candidates for the mechanosensory system in bone. J Biomech Eng 1991; 113: 191-197
  • 15 Wijenayaka AR, Kogawa M, Lim HP et al. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 2011; 6
  • 16 Mao B, Wu W, Davidson G et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 2002; 417: 664-667
  • 17 Cowin SC. On mechanosensation in bone under microgravity. Bone 1998; 22 (Suppl. 05)
  • 18 Bélanger M, Stein RB, Wheeler GD et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil 2000; 81: 1090-1098
  • 19 Maganaris CN, Rittweger J, Narici MV. Adaptive Processes in Human Bone and Tendon. In: Cardinale M, Newton R, Nosaka K, eds. Strength and Conditioning: Biological Principles and Practical Applications. Oxford: Wiley-Blackwell; 2011
  • 20 Rittweger J, Beller G, Armbrecht G et al. Prevention of bone loss during 56 days of strict bed rest by side-alternating resistive vibration exercise. Bone 2010; 46: 137-147
  • 21 Shackelford LC, LeBlanc AD, Driscoll TB et al. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol (1985) 2004; 97: 119-129
  • 22 Frings-Meuthen P, Buehlmeier J, Baecker N et al. High sodium chloride intake exacerbates immobilization-induced bone resorption and protein losses. J Appl Physiol (1985) 2011; 111: 537-542
  • 23 Frings-Meuthen P, Baecker N, Heer M. Low-grade metabolic acidosis may be the cause of sodium chloride-induced exaggerated bone resorption. J Bone Miner Res 2008; 23: 517-524
  • 24 Buehlmeier J, Frings-Meuthen P, Remer T et al. Alkaline salts to counteract bone resorption and protein wasting induced by high salt intake: results of a randomized controlled trial. J Clin Endocrinol Metab 2012; 97: 4789-4797
  • 25 Clauser C, McConville J, Young J. Weight, volume, and center of mass of segments of the human body. Ohio: Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base; 1969