Synthesis 2014; 46(16): 2149-2154
DOI: 10.1055/s-0034-1378281
special topic
© Georg Thieme Verlag Stuttgart · New York

THF Solvent as a Proton Shuttle in the AuCl3-Catalyzed Cycloisomerization of a Bromoallenyl Ketone: A Mechanistic DFT Study

Wei Guo
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: xyz@wzu.edu.cn
,
Yuanzhi Xia*
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. of China   Email: xyz@wzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 28 April 2014

Accepted after revision: 16 May 2014

Publication Date:
24 June 2014 (online)


Abstract

The solvent effect on the regiochemistry of the AuCl3-catalyzed cycloisomerization of a bromoallenyl ketone was evaluated by DFT calculations, which provided theoretical rationale for the original experimental findings from the Gevorgyan group. Upon the generation of the gold carbenoid intermediate from cyclization of the allene precursor, the tetrahydrofuran solvent could act as a proton shuttle to assist the 1,2-H migration to afford the 2-bromofuran product. This solvent-involved pathway is lower in energy than the 1,2-Br migration and thus leads to a solvent-controlled switch of regioselectivity in the reaction concerned.

Supporting Information

 
  • References


    • For recent reviews, see:
    • 1a Rudolph M, Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 1b Garayalde D, Nevado C. ACS Catal. 2012; 2: 1462
    • 1c Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 1d Krause N, Winter C. Chem. Rev. 2011; 111: 1994
    • 1e Yamamoto Y, Gridnev ID, Patil NT, Jin T. Chem. Commun. 2009; 5075
    • 1f Abu Sohel SM, Liu R.-S. Chem. Soc. Rev. 2009; 38: 2269
    • 1g Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
    • 1h Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
    • 1i Jiménez-Núnez E, Echavarren AM. Chem. Commun. 2007; 333
    • 1j Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 1k Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
    • 1l Rudolph M, Hashmi AS. K. Chem. Commun. 2011; 47: 5075
    • 1m Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 1n Gorin DJ, Toste FD. Nature (London) 2007; 446: 395
    • 1o Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
    • 1p Sengupta S, Shi X. ChemCatChem 2010; 2: 609
    • 1q Obradors C, Echavarren AM. Acc. Chem. Res. 2014; 47: 902
    • 1r Wang Y.-M, Lackner AD, Toste FD. Acc. Chem. Res. 2014; 47: 889
    • 1s Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
    • 2a Yang W, Hashmi AS. K. Chem. Soc. Rev. 2014; 43: 2941
    • 2b Soriano E, Fernandez I. Chem. Soc. Rev. 2014; 43: 3041
    • 2c Yu S, Ma S. Angew. Chem. Int. Ed. 2012; 51: 3047
    • 2d Montserrat S, Ujaque G, López F, Mascarenas JL, Lledós A. Top Curr. Chem. 2011; 302: 225
    • 2e Suárez-Pantiga S, Hernández-Díaz C, Rubio E, González JM. Angew. Chem. Int. Ed. 2012; 51: 11552
    • 3a Hashmi AS. K, Schwarz L, Choi J.-H, Frost TM. Angew. Chem. Int. Ed. 2000; 39: 2285
    • 3b Hashmi AS. K, Schwarz L, Bats JW. J. Prakt. Chem. 2000; 342: 40
    • 3c Hashmi AS. K, Choi J.-H, Bats JW. J. Prakt. Chem. 1999; 341: 342
  • 4 Sromek AW, Rubina M, Gevorgyan V. J. Am. Chem. Soc. 2005; 127: 10500
    • 5a Wang T, Shi S, Hansmann MM, Rettenmeier E, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 3715
    • 5b Jiang H, Yin M, Li Y, Liu B, Zhao J, Wu W. Chem. Commun. 2014; 50: 2037
    • 5c Zhang X, Song Y, Gao L, Guo X, Fan X. Org. Biomol. Chem. 2014; 12: 2099

      For examples of solvent-controlled selectivity in catalytic reactions, see:
    • 6a Chen Y, Liu Y. J. Org. Chem. 2011; 76: 5274
    • 6b Garner AW, Harris CF, Vezzu DA. K, Pike RD, Huo S. Chem. Commun. 2011; 47: 1902
    • 6c Yamashita M, Noro T, Iida A. Tetrahedron Lett. 2013; 54: 6848
    • 6d Zhao C, Wang D, Philips DL. J. Am. Chem. Soc. 2003; 125: 15200
    • 6e Rybtchinski B, Milstein D. J. Am. Chem. Soc. 1999; 121: 4528
    • 6f Ranu BC, Chattopadhyay K, Adak L. Org. Lett. 2007; 9: 4595
    • 6g Liu H, Wang L, Tong X. Org. Lett. 2011; 13: 5072
    • 6h Yi CS, Guo R. Organometallics 2009; 28: 6585
    • 6i Intra A, Nicotra S, Riva S, Danieli B. Adv. Synth. Catal. 2005; 347: 973
    • 6j Dörwald FZ. Angew. Chem. Int. Ed. 2003; 42: 1332
    • 6k Motokura K, Matsunaga S, Miyaji A, Yashima T, Baba T. Tetrahedron Lett. 2011; 52: 6687
    • 6l Allegretti PA, Ferreira EM. Org. Lett. 2011; 13: 5924
    • 6m Panda B, Sarkar TK. Synthesis 2013; 45: 1227
    • 6n Liu T, Han L.-L. J. Organomet. Chem. 2014; 752: 76
  • 7 Xia Y, Dudnik AS, Gevorgyan V, Li Y. J. Am. Chem. Soc. 2008; 130: 6940
    • 8a Huang G, Cheng B, Xu L, Li Y, Xia Y. Chem. Eur. J. 2012; 18: 5401
    • 8b Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556

      For selected examples, see:
    • 9a Umland K.-D, Kirsch SF. Synlett 2013; 24: 1471
    • 9b Lu B, Li Y, Wang Y, Aue DH, Luo Y, Zhang L. J. Am. Chem. Soc. 2013; 135: 8512
    • 9c Dudnik A, Xia Y, Li Y, Gevorgyan V. J. Am. Chem. Soc. 2010; 132: 7645
    • 9d Dudnik AS, Sromek AW, Rubina M, Kim JT, Kel’in AV, Gevorgyan V. J. Am. Chem. Soc. 2008; 130: 1440
    • 9e Schwier T, Sromek AW, Yap DM. L, Chernyak D, Gevorgyan V. J. Am. Chem. Soc. 2007; 129: 9868
    • 9f Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
    • 9g Luo Y, Ji K, Li Y, Zhang L. J. Am. Chem. Soc. 2012; 134: 17412
    • 9h Ye L, He W, Zhang L. J. Am. Chem. Soc. 2010; 132: 8550
    • 9i Wang Y, McGonigal PR, Herlé B, Besora M, Echavarren AM. J. Am. Chem. Soc. 2014; 136: 801

      For examples of counterion-assisted H-migrations, see:
    • 10a Bandini M, Bottoni A, Chiarucci M, Cera G, Miscione GP. J. Am. Chem. Soc. 2012; 134: 20690
    • 10b Kim JH, Park SW, Park SR, Lee S, Kang EJ. Chem. Asian J. 2011; 6: 1982
    • 10c Kovács G, Ujaque G, Lledós A. J. Am. Chem. Soc. 2008; 130: 853
    • 11a Kovacs G, Lledós A, Ujaque G. Organometallics 2010; 29: 3252
    • 11b Robiette R, Aggarwal VK, Harvey JN. J. Am. Chem. Soc. 2007; 129: 15513
    • 11c Nguyen MT, Raspoet G, Vanquickenborne LG. J. Am. Chem. Soc. 1997; 119: 2552
    • 11d Anand M, Sunoj RB. Organometallics 2012; 31: 6466
    • 11e Sordo TL, Ardura D. Eur. J. Org. Chem. 2008; 3004
    • 12a Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 3470
    • 12b Liang Y, Liu S, Xia Y, Li Y, Yu Z.-X. Chem. Eur. J. 2008; 14: 4361
    • 12c Liang Y, Liu S, Yu Z.-X. Synlett 2009; 905
    • 12d Cantillo D, Kappe CO. J. Org. Chem. 2010; 75: 8615
    • 12e Roy D, Patel C, Sunoj RB. J. Org. Chem. 2009; 74: 6936
    • 12f Yang L, Fang R. J. Mol. Catal. A: Chem. 2013; 379: 197
    • 12g Krauter CM, Hashmi AS. K, Pernpointner M. ChemCatChem 2010; 2: 1226
    • 13a Zhou T, Xu L, Xia Y. Org. Lett. 2013; 15: 6074
    • 13b Cheng B, Huang G, Xu L, Xia Y. Org. Biomol. Chem. 2012; 10: 4417
    • 13c Xia Y, Huang G. J. Org. Chem. 2010; 75: 7842
    • 13d Xia Y, Dudnik AS, Li Y, Gevorgyan V. Org. Lett. 2010; 12: 5538
  • 14 Lyngvi E, Schoenebeck F. Tetrahedron 2013; 69: 5715
  • 15 See the Supporting Information for details.
  • 16 Shi F.-Q, Li X, Xia Y, Zhang L, Yu Z.-X. J. Am. Chem. Soc. 2007; 129: 15503
    • 17a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
    • 17b Zhao Y, Truhlar DG. Acc. Chem. Res. 2008; 41: 157
    • 18a Benitez D, Shapiro ND, Tkatchouk E, Wang Y, Goddard III WA, Toste FD. Nat. Chem. 2009; 1: 482
    • 18b Faza ON, Rodríguez RÁ, López CS. Theor. Chem. Acc. 2011; 128: 647
  • 19 Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010; 132: 154104
  • 20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.01. Gaussian, Inc.; Wallingford CT: 2009
    • 21a Hehre WJ, Ditchfield R, Pople JA. J. Chem. Phys. 1972; 56: 2257
    • 21b Hariharan PC, Pople JA. Theor. Chim. Acta 1973; 28: 213
    • 22a Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 270
    • 22b Wadt WR, Hay PJ. J. Chem. Phys. 1985; 82: 284
    • 22c Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 23 Okuno Y. Chem. Eur. J. 1997; 3: 212
    • 24a Wang M, Fan T, Lin Z. Organometallics 2012; 31: 560
    • 24b Ariafard A, Brookes NJ, Stanger R, Yates BF. Organometallics 2011; 30: 1340
    • 24c Liu B, Gao M, Dang L, Zhao H, Marder TB, Lin Z. Organometallics 2012; 31: 3410
    • 24d Liu Q, Lan Y, Liu J, Li G, Wu Y.-D, Lei A. J. Am. Chem. Soc. 2009; 131: 10201