Synlett 2014; 25(13): 1916-1920
DOI: 10.1055/s-0034-1378320
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Imidazoles and Pyrimidines Using Palladium-Catalyzed Decar­boxylative Intramolecular Condensation of 1,2,4-Oxadiazol-5(4H)-ones

Takuya Shimbayashi
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Fax: +81(75)3832499   eMail: kokamoto@scl.kyoto-u.ac.jp   eMail: ohe@scl.kyoto-u.ac.jp
,
Kazuhiro Okamoto*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Fax: +81(75)3832499   eMail: kokamoto@scl.kyoto-u.ac.jp   eMail: ohe@scl.kyoto-u.ac.jp
,
Kouichi Ohe*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Fax: +81(75)3832499   eMail: kokamoto@scl.kyoto-u.ac.jp   eMail: ohe@scl.kyoto-u.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 07. Mai 2014

Accepted after revision: 13. Mai 2014

Publikationsdatum:
25. Juni 2014 (online)


Abstract

We found that 1,2,4-oxadiazol-5(4H)-ones acted as iminonitrene equivalents in the presence of a palladium catalyst and a stoichiometric amount of phosphine and that aza-Wittig-type condensation with the internal carbonyl moiety occurred to afford the corresponding imidazoles and pyrimidines.

Supporting Information

 
  • References and Notes


    • For selected examples on the material or medicinal application of imidazoles, see:
    • 1a Fabbrizzi L, Francese G, Licchelli M, Perotti A, Taglietti A. Chem. Commun. 1997; 581
    • 1b Zhang Y, Yang RH, Liu F, Li KA. Anal. Chem. 2004; 76: 7336
    • 1c Zeng Q, Cai P, Li Z, Qin J, Tang BZ. Chem. Commun. 2008; 1094
    • 1d Berezin MY, Kao J, Achilefu S. Chem. Eur. J. 2009; 15: 3560
    • 1e Anderson EB, Long TE. Polymer 2010; 51: 2447
    • 1f Kulhánek J, Bureš F. Beilstein J. Org. Chem. 2012; 8: 25
    • 1g Zhang L, Peng X.-M, Damu GL. V, Geng R.-X, Zhou C.-H. Med. Res. Rev. 2014; 34: 340

      For transition-metal-catalyzed synthesis of imidazoles and pyrimidines, see:
    • 2a Xi N, Huang Q, Liu L. Comprehensive Heterocyclic Chemistry III . Joule J. Vol. 4, 281
    • 2b Rewcastle GW. Comprehensive Heterocyclic Chemistry III . Aitken RA. Vol. 8, 191
    • 2c Kamijo S, Yamamoto Y. Chem. Asian J. 2007; 2: 568
    • 2d Gulevich AV, Dudnik AS, Chernyak N, Gevorgyan V. Chem. Rev. 2013; 113: 3084
  • 3 Okamoto K, Oda T, Kohigashi S, Ohe K. Angew. Chem. Int. Ed. 2011; 50: 11470
  • 4 Okamoto K, Shimbayashi T, Tamura E, Ohe K. Chem. Eur. J. 2014; 20: 1490

    • For reviews on aza-Wittig reactions, see:
    • 5a Fresneda PM, Molina P. Synlett 2004; 1
    • 5b Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM. Tetrahedron 2007; 63: 523
    • 5c Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM. Organic Azides: Syntheses and Applications . Bräse S, Banert K. John Wiley and Sons; Chichester: 2009. Chap. 15, 439-46

      As a related chemistry, catalytic carbene transfer reactions via phosphorus ylides have been reported by some groups. See:
    • 6a Mirafzal GA, Cheng G, Woo LK. J. Am. Chem. Soc. 2002; 124: 176
    • 6b Cheng G, Mirafzal GA, Woo LK. Organometallics 2003; 22: 1468 ; and references cited therein
    • 6c Aggarwal VK, Fulton JR, Sheldon CG, de Vicente J. J. Am. Chem. Soc. 2003; 125: 6034
    • 6d Miki K, Washitake Y, Ohe K, Uemura S. Angew. Chem. Int. Ed. 2004; 43: 1857

      Oxadiazolones are easily prepared in a few steps from abundant molecules. See:
    • 7a Takács K, Harádnyi K. Chem. Ber. 1970; 103: 2330
    • 7b Charton J, Cousaert N, Bochu C, Willand N, Déprez B, Déprez-Poulain R. Tetrahedron Lett. 2007; 48: 1479
  • 8 General Procedure for the Catalytic ReactionsA solution of Pd(PPh3)4 (6.9 mg, 6.0 μmol) and oxadiazolone 3 (0.20 mmol) in 1,4-dioxane (1.5 mL) was stirred at 80 °C for 24 h. The reaction mixture was filtered through a pad of Florisil®, and the filtrate was concentrated under vacuum. The residue was subjected to column chromatography on Florisil® (hexane–EtOAc = 4:1) to afford imidazole 4.Imidazole 4aWhite solid (43.8 mg, 0.20 mmol, 99% yield; mp 160.1–160.5 °C). 1H NMR (400 MHz, CDCl3): δ = 7.22–7.45 (m, 7 H), 7.75 (d, J = 7.4 Hz, 2 H), 7.87 (d, J = 7.3 Hz, 2 H). 13C NMR (100 MHz, acetone-d 6): δ = 114.3, 125.4, 125.9, 127.2, 129.0, 129.3, 129.5, 131.8, 135.6, 142.6, 147.4. HRMS–FAB: m/z calcd for C15H13N2 [M + H]+: 221.1079; found: 221.1069.Imidazole 4cWhite solid (46.0 mg, 0.19 mmol, 97% yield; mp 65.0–66.1 °C). 1H NMR (400 MHz, CDCl3): δ = 7.08 (dd, J HH = 8.8 Hz, J HF = 8.8 Hz, 2 H), 7.27 (t, J = 7.3 Hz, 1 H), 7.37 (s, 1 H), 7.39 (t, J = 7.3 Hz, 2 H), 7.74 (d, J = 7.3 Hz, 2 H), 7.82 (dd, J HH = 8.3 Hz, J HF = 4.9 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 115.7 (d, J CF = 21.7 Hz), 117.7, 125.0, 126.4 (d, J CF = 3.1 Hz), 127.2, 127.3, 127.5 (d, J CF = 8.0 Hz), 128.8, 132.4, 146.7, 163.0 (d, J CF = 248 Hz). HRMS–FAB: m/z calcd for C15H12FN2 [M + H]+: 239.0985; found: 239.0990.Imidazole 4iWhite solid (30.1 mg, 0.13 mmol, 67% yield; mp 168.5–171.0 °C). 1H NMR (400 MHz, CDCl3): δ = 7.08 (dd, J = 5.1, 3.9 Hz, 1 H), 7.27 (t, J = 7.3 Hz, 1 H), 7.34 (d, J = 5.1 Hz, 1 H), 7.35 (s, 1 H), 7.39 (d, J = 8.1 Hz, 2 H), 7.41 (d, J = 3.7 Hz, 1 H), 7.72 (br s, 2 H). 13C NMR (100 MHz, acetone-d6 ): δ = 116.4, 124.1, 125.2, 126.3, 127.0, 128.2, 129.0, 134.4, 135.2, 140.5, 143.1. HRMS–FAB: m/z calcd for C13H11N2S [M + H]+: 227.0643; found: 227.0639.Imidazole 4jPale yellow solid (35.0 mg, 0.14 mmol, 70% yield; mp 124.3–126.2 °C). 1H NMR (400 MHz, CDCl3): δ = 3.84 (s, 3 H), 6.93 (d, J = 8.8 Hz, 2 H), 7.27 (d, J = 8.5 Hz, 2 H), 7.35 (t, J = 7.6 Hz, 1 H), 7.42 (t, J = 7.8 Hz, 2 H), 7.67 (d, J = 8.5 Hz, 2 H), 7.87 (d, J = 7.1 Hz, 2 H). 13C NMR (100 MHz, acetone-d6 ): δ = 55.3, 114.6, 125.7, 125.8, 126.6, 128.7, 129.3, 129.9, 131.1, 131.8, 146.9, 159.4. HRMS–FAB: m/z calcd for C16H15N2O [M + H]+: 251.1184; found: 251.1181.Imidazole 4oWhite solid (29.7 mg, 0.19 mmol, 94% yield; mp 180.5–181.6 °C). 1H NMR (400 MHz, CDCl3): δ = 2.29 (s, 3 H), 6.82 (s, 1 H), 7.31 (t, J = 6.4 Hz, 1 H), 7.37 (t, J = 6.8 Hz, 2 H), 7.81 (d, J = 7.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 12.0, 119.4, 125.0, 128.2, 128.8, 130.4, 132.1, 146.0. HRMS–FAB: m/z calcd for C10H11N2 [M + H]+: 159.0922; found: 159.0923.

    • For reviews, see:
    • 9a Kitamura M, Narasaka K. Chem. Rec. 2002; 2: 268
    • 9b Narasaka K, Kitamura M. Eur. J. Org. Chem. 2005; 4505

      For recent examples, see:
    • 10a Zaman S, Kitamura M, Abell AD. Org. Lett. 2005; 7: 609
    • 10b Gerfaud T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2009; 48: 572
    • 10c Tan Y, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 3676
    • 10d Kitamura M, Moriyasu Y, Okauchi T. Synlett 2011; 643
    • 10e Faulkner A, Bower JF. Angew. Chem. Int. Ed. 2012; 51: 1675
    • 10f Faulkner A, Scott JS, Bower JF. Chem. Commun. 2013; 49: 1521
    • 10g Race NJ, Bower JF. Org. Lett. 2013; 15: 4616
    • 10h Hong WP, Iosub AV, Stahl SS. J. Am. Chem. Soc. 2013; 135: 13664

      For recent examples of N–O bond cleavage of oxime esters or ethers in catalytic reactions using metals other than palladium, see:
    • 11a Too PC, Wang YF, Chiba S. Org. Lett. 2010; 12: 5688
    • 11b Yoshida Y, Kurahashi T, Matsubara S. Chem. Lett. 2011; 40: 1140
    • 11c Too PC, Chua SH, Wong SH, Chiba S. J. Org. Chem. 2011; 76: 6159
    • 11d Ren Z.-H, Zhang Z.-Y, Yang B.-Q, Wang Y.-Y, Guan Z.-H. Org. Lett. 2011; 13: 5394
    • 11e Qi X, Jiang Y, Park C.-M. Chem. Commun. 2011; 47: 7848
    • 11f Nakamura I, Iwata T, Zhang D, Terada M. Org. Lett. 2012; 14: 206
    • 11g Jiang Y, Chan WC, Park C.-M. J. Am. Chem. Soc. 2012; 134: 4104
    • 11h Yoshida Y, Kurahashi T, Matsubara S. Chem. Lett. 2012; 41: 1498
    • 11i Wei Y, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 3756
    • 11j Shi Z, Koester DC, Boultadakis-Arapinis M, Glorius F. J. Am. Chem. Soc. 2013; 135: 12204
    • 11k Nakamura I, Onuma T, Zhang D, Terada M. Tetrahedron Lett. 2014; 55: 1178
    • 11l Tang X, Huang L, Xu Y, Yang J, Wu W, Jiang H. Angew. Chem. Int. Ed. 2014; 53: 4205
    • 11m Nakamura I, Ishida Y, Terada M. Org. Lett. 2014; 16: 2562
  • 12 Xie H, Lin F, Yang L, Chen X, Ye X, Tian X, Lei Q, Fang W. J. Organomet. Chem. 2013; 745-746: 417
  • 13 For the mechanism of aza-Wittig reactions, see: Cossío FP, Alonso C, Lecea B, Ayerbe M, Rubiales G, Palacios F. J. Org. Chem. 2006; 71: 2839

    • For examples on the intramolecular aza-Wittig-type reactions giving N-heterocyclic compounds:
    • 14a Hickey DM. B, MacKenzie AR, Moody CJ, Rees CW. J. Chem. Soc., Perkin Trans. 1 1987; 921
    • 14b Kennedy M, Moody CJ, Rees CW, Vaquero JJ. J. Chem. Soc., Perkin Trans. 1 1987; 1395
    • 14c Takeuchi H, Yanagida S.-i, Ozaki T, Hagiwara S, Eguchi S. J. Org. Chem. 1989; 54: 431
    • 14d Chen J, Forsyth CJ. Org. Lett. 2003; 5: 1281
    • 14e Marsden SP, McGonagle AE, Mckeever-Abbas B. Org. Lett. 2008; 10: 2589
  • 15 Only 15% of imidazole 4a was obtained in the reaction of the stoichiometric amount of Pd2(dba)3 with oxadiazolone 3a (Scheme 8). This result indicates that the reaction pathway bypassing the iminophosphorane intermediate (path b) also exists but is only a minor pathway.