Synlett 2014; 25(17): 2385-2389
DOI: 10.1055/s-0034-1378543
synpacts
© Georg Thieme Verlag Stuttgart · New York

Dehydrogenative Oxidation of Primary Amines to Nitriles

Kuei-Nin T. Tseng
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA   Fax: +1(734)6474865   eMail: nszym@umich.edu
,
Nathaniel K. Szymczak*
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA   Fax: +1(734)6474865   eMail: nszym@umich.edu
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. Juni 2014

Accepted after revision: 02. Juli 2014

Publikationsdatum:
21. August 2014 (online)


Abstract

Homogeneous catalysts can promote the oxidation of primary amines to nitriles without added chemical oxidants. An amide-derived N,N,N-ruthenium(II)–hydride complex was discovered that promotes the dehydrogenation of primary and secondary amines to the corresponding nitriles and imines with concomitant liberation of H2, notably without added hydrogen acceptor or base. The dehydrogenative protocol is tolerant of substrates that contain oxidizable functionality and is selective for the dehydrogenation of primary amines (-CH2NH2) in the presence of amines without α-CH hydrogens.

 
  • References and Notes

    • 1a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 1b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 1c Pollak P, Romeder G, Hagedorn F, Gelbke H.-P In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
  • 2 Sheldon RA, Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds . Academic Press; New York: 1981
  • 3 Nicolaou KC, Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992
    • 4a Schumperli MT, Hammond C, Hermans I. ACS Catal. 2012; 2: 1108
    • 4b Dobereiner GE, Crabtree RH. Chem. Rev. 2010; 110: 681
    • 4c Murahashi S.-I, Imada Y In Transition Metals for Organic Synthesis . Wiley-VCH; Weinheim: 2008: 497
    • 5a Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2003; 42: 1480
    • 5b Kim J, Stahl SS. ACS Catal. 2013; 3: 1652
    • 5c Cristian L, Nica S, Pavel OD, Mihailciuc C, Almasan V, Coman SM, Hardacre C, Parvulescu VI. Catal. Sci. Tech. 2013; 3: 2646
    • 6a Yoshida T, Okano T, Otsuka S. J. Chem. Soc., Chem. Commun. 1979; 870
    • 6b Bernskoetter WH, Brookhart M. Organometallics 2008; 27: 2036
    • 6c Wang Z, Belli J, Jensen CM. Faraday Discuss. 2011; 151: 297
    • 6d Tseng K.-NT, Rizzi AM, Szymczak NK. J. Am. Chem. Soc. 2013; 135: 16352
    • 6e Okano K, Saito Y, Ogino Y. Bull. Chem. Soc. Jpn. 1972; 45: 69
  • 7 Friedrich A, Schneider S. ChemCatChem 2009; 1: 72
    • 8a Gunanathan C, Milstein D. Science 2013; 341
    • 8b Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
  • 9 Zhang J, Leitus G, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2005; 127: 10840
  • 10 Gunanathan C, Ben-David Y, Milstein D. Science 2007; 317: 790
    • 11a Nielsen M, Alberico E, Baumann W, Drexler H.-J, Junge H, Gladiali S, Beller M. Nature (London, U.K.) 2013; 495: 85
    • 11b Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. Nat. Chem. 2013; 5: 342
    • 11c Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2012; 51: 2772
    • 11d Tseng K.-NT, Kampf JW, Szymczak NK. Organometallics 2013; 32: 2046
    • 12a Fujita K.-i, Tanaka Y, Kobayashi M, Yamaguchi R. J. Am. Chem. Soc. 2014; 136: 4829
    • 12b Wu J, Talwar D, Johnston S, Yan M, Xiao J. Angew. Chem. Int. Ed. 2013; 52: 6983
    • 13a Prades A, Peris E, Albrecht M. Organometallics 2011; 30: 1162
    • 13b Yi CS, Lee DW. Organometallics 2009; 28: 947
  • 14 Yoshimura N, Moritani I, Shimamura T, Murahashi S. J. Am. Chem. Soc. 1973; 95: 3038
    • 15a Shvo Y, Laine RM. J. Chem. Soc., Chem. Commun. 1980; 753
    • 15b Bui TheK, Concilio C, Porzi G. J. Organomet. Chem. 1981; 208: 249
    • 15c Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Chem. Rev. 2010; 110: 2294
    • 15d Anguille S, Brunet J.-J, Chu NC, Diallo O, Pages C, Vincendeau S. Organometallics 2006; 25: 2943
  • 16 Crabtree RH. Energy Environ. Sci. 2008; 1: 134
  • 17 http://www.nist.gov.
  • 18 Oae S. Organic Sulfur Chemistry: Structure and Mechanism. CRC Press; Boca Raton, FL: 1991
    • 19a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
    • 19b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1496
  • 20 Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
  • 21 Clapham SE, Hadzovic A, Morris RH. Coord. Chem. Rev. 2004; 248: 2201
  • 22 Tseng, K. T.; Hale, L. V. A.; Kampf, J. W.; Szymczak, N. K. manuscript in preparation.
  • 23 http://www1.eere.energy.gov/vehiclesandfuels/pdfs/ program/hstt_roadmap_june2013.pdf.
  • 24 Grellier M, Sabo-Etienne S. Dalton Trans. 2014; 43: 6283
    • 25a Pez GP, Scott AR, Cooper AC, Cheng H. US 7101530, 2006
    • 25b Pez GP, Scott AR, Cooper AC, Cheng H, Wilhelm FC, Abdourazak AH. US 7351395, 2008
  • 26 http://www.hydrogen.energy.gov/pdfs/review13/ st098_jensen_2013_o.pdf.
  • 27 Reguillo R, Grellier M, Vautravers N, Vendier L, Sabo-Etienne S. J. Am. Chem. Soc. 2010; 132: 7854
  • 28 Compound 2: catalogue no. 794406; compound 3: catalogue no. 794414 (Sigma-Aldrich).