Synthesis 2015; 47(19): 2924-2930
DOI: 10.1055/s-0034-1378718
special topic
© Georg Thieme Verlag Stuttgart · New York

Hypervalent Iodine Mediated C–C Double Bond Activation: A Cascade Access to α-Keto Diacetates from Readily Available Cinnamic Acids

Le Liu
Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn   Email: kangzhao@tju.edu.cn
,
Daisy Zhang-Negrerie
Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn   Email: kangzhao@tju.edu.cn
,
Yunfei Du*
Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn   Email: kangzhao@tju.edu.cn
,
Kang Zhao*
Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. of China   Email: duyunfeier@tju.edu.cn   Email: kangzhao@tju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 01 April 2015

Accepted after revision: 03 May 2015

Publication Date:
24 June 2015 (online)


Abstract

The reaction of cinnamic acids with (diacetoxyiodo)benzene in 1,2-dichloroethane in the presence of sulfuric acid provides an easy and direct access to the α-keto diacetate framework. This hypervalent iodine mediated oxidative reaction involves a tandem sequence of aryl migration, insertion of an oxygen atom, decarboxylation and diacetoxylation. A reaction mechanism is proposed and discussed in light of control experiments.

Supporting Information

 
  • References


    • For selected examples, see:
    • 1a Serguchev YA, Beletskaya IP. Russ. Chem. Rev. 1980; 49: 1119
    • 1b Benson D, Sutcliffe LH, Walkley J. J. Am. Chem. Soc. 1959; 81: 4488
    • 1c Shen C, Zhang P, Sun Q, Bai S, Hor TS. A, Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 1d Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
    • 1e Cornella J, Larrosa I. Synthesis 2012; 44: 653
    • 1f Wang ZL. Adv. Synth. Catal. 2013; 355: 2745

      For selected examples, see:
    • 2a Xu P, Abdukader A, Hu K, Cheng Y, Zhu C. Chem. Commun. 2014; 50: 2308
    • 2b Mai WP, Song G, Sun G, Yang L, Yuan J, Xiao Y, Mao P, Qu L. RSC Adv. 2013; 3: 19264
    • 2c Huang H, Jia K, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 1881
    • 2d Boto A, Hernández R, Suárez E. J. Org. Chem. 2000; 65: 4930
    • 2e Zhang N, Yang D, Wei W, Yuan L, Nie F, Tian L, Wang H. J. Org. Chem. 2015; 80: 3258
    • 2f Li Z, Liu Z. Org. Lett. 2013; 15: 406
    • 2g Rong G, Liu D, Lu L, Yan H, Zheng Y, Chen J, Mao J. Tetrahedron 2014; 70: 5033

      For selected examples, see:
    • 3a Jia W, Jiao N. Org. Lett. 2010; 12: 2000
    • 3b Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2014; 16: 3624
    • 3c Jiang Q, Xu B, Jia J, Zhao A, Zhao Y, Li Y, He N, Guo C. J. Org. Chem. 2014; 79: 7372
    • 3d Priebbenow DL, Becker P, Bolm C. Org. Lett. 2013; 15: 6155
    • 3e Zhang Y, Patel S, Mainolfi N. Chem. Sci. 2012; 3: 3196
    • 3f Pandey G, Bhowmik S, Batra S. Org. Lett. 2013; 15: 5044
    • 3g Ranjit S, Duan Z, Zhang P, Liu X. Org. Lett. 2010; 12: 4134
    • 3h Li X, Yang F, Wu Y, Wu Y. Org. Lett. 2014; 16: 992
    • 3i Rokade BV, Prabhu KR. J. Org. Chem. 2014; 79: 8110

      For selected examples, see:
    • 4a Bhadra S, Dzik WI, Goossen LJ. J. Am. Chem. Soc. 2012; 134: 9938
    • 4b Li H, Liu G. J. Org. Chem. 2014; 79: 509
    • 4c Kiyokawa K, Yahata S, Kojima T, Minakata S. Org. Lett. 2014; 16: 4646
    • 4d Francisco CG, González CC, Suárez E. Tetrahedron Lett. 1997; 38: 4141
    • 4e Boto A, Hernández R, Suárez E. Tetrahedron Lett. 1999; 40: 5945
    • 4f Bhadra S, Dzik W, Gooßen LJ. Synthesis 2013; 45: 2387
    • 5a Mosher WA, Kehr CL. J. Am. Chem. Soc. 1953; 75: 3172
    • 5b Corey EJ, Casanova JJr. J. Am. Chem. Soc. 1963; 85: 165
    • 5c Kochi JK. J. Am. Chem. Soc. 1965; 87: 1811
    • 5d Kochi JK. J. Am. Chem. Soc. 1965; 87: 3609
    • 5e Kochi JK, Bacha JD, Bethea III TW. J. Am. Chem. Soc. 1967; 89: 6538

      For selected reviews on hypervalent iodine reagents, see:
    • 6a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 6b Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 6c Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
    • 6d Richardson RD, Wirth T. Angew. Chem. Int. Ed. 2006; 45: 4402
    • 6e Dohi T, Kita Y. Chem. Commun. 2009; 2073
    • 6f Zhdankin VV. Hypervalent Iodine Chemistry . Wiley; Chichester: 2014
    • 6g Ding Q, Ye Y, Fan R. Synthesis 2013; 45: 1
    • 6h Zheng Z, Zhang-Negrerie D, Du Y, Zhao K. Sci. China Chem., Ser. B 2014; 57: 189
    • 6i Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769

      For selected examples of oxidative rearrangements mediated by hypervalent iodine reagents, see:
    • 7a Singh FV, Wirth T. Synthesis 2013; 45: 2499
    • 7b Singh FV, Rehbein J, Wirth T. ChemistryOpen 2012; 1: 245
    • 7c Farid U, Malmedy F, Claveau R, Albers L, Wirth T. Angew. Chem. Int. Ed. 2013; 52: 7018
    • 7d Boye AC, Meyer DC, Ingison K, French AN, Wirth T. Org. Lett. 2003; 5: 2157
    • 7e Wirth T. Top. Curr. Chem. 2003; 224: 185
    • 7f Rebrovic L, Koser GF. J. Org. Chem. 1984; 49: 2462
    • 7g Justik MW, Koser GF. Tetrahedron Lett. 2004; 45: 6159
    • 7h Purohit VC, Allwein SP, Bakale RP. Org. Lett. 2013; 15: 1650
    • 7i Shibuya M, Ito S, Takahashi M, Iwabuchi Y. Org. Lett. 2004; 6: 4303
    • 7j Guérard KC, Guérinot A, Bouchard-Aubin C, Ménard M, Lepage M, Beaulieu MA, Canesi S. J. Org. Chem. 2012; 77: 2121
    • 7k Ahmad A, Scarassati P, Jalaian N, Olofsson B, Silva LF. Jr. Tetrahedron Lett. 2013; 54: 5818
    • 7l Singh OV, Garg CP, Kapoor RP. Synthesis 1990; 1025
    • 7m Beaulieu M, Guérard KC, Maertens G, Sabot C, Canesi S. J. Org. Chem. 2011; 76: 9460
    • 7n Desjardins S, Maertens G, Canesi S. Org. Lett. 2014; 16: 4828
    • 8a Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2013; 15: 2906
    • 8b Liu L, Du L, Zhang-Negrerie D, Du Y, Zhao K. Org. Lett. 2014; 16: 5772
    • 8c Shang S, Zhang-Negrerie D, Du Y, Zhao K. Angew. Chem. Int. Ed. 2014; 53: 6216

      For selected examples employing Lewis acids or Brønsted acids to activate hypervalent iodine reagents, see:
    • 9a Schafer S, Wirth T. Angew. Chem. Int. Ed. 2010; 49: 2786
    • 9b Kitamura T, Fukatsu N, Fujiwara Y. J. Org. Chem. 1998; 63: 8579
    • 9c Miyamoto K, Tada N, Ochiai M. J. Am. Chem. Soc. 2007; 129: 2772
    • 9d Ochiai M, Miyamoto K, Shiro M, Ozawa T, Yamaguchi K. J. Am. Chem. Soc. 2003; 125: 13006
    • 9e Hamamoto H, Anilkumar G, Tohma H, Kita Y. Chem. Eur. J. 2002; 8: 5377
    • 9f Kita Y, Watanabe H, Egi M, Saiki T, Fukuoka Y, Tohma H. J. Chem. Soc., Perkin Trans. 1 1998; 635
    • 9g Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron 2001; 57: 345
  • 10 Nolla-Saltiel R, Carrillo-Arcos UA, Porcel S. Synthesis 2014; 46: 165
  • 11 Jung M, Yoon J, Kim HS, Ryu J. Synthesis 2010; 2713
  • 12 Magens S, Plietker B. J. Org. Chem. 2010; 75: 3715
  • 13 Hattori K, Sajiki H, Hirota K. Tetrahedron 2001; 57: 4871
  • 14 Cutulic SP. Y, Findlay NJ, Zhou S, Chrystal EJ. T, Murphy JA. J. Org. Chem. 2009; 74: 8713
  • 15 Wang A, Jiang H, Li X. J. Org. Chem. 2011; 76: 6958
  • 16 Zhang C, Wang X, Jiao N. Synlett 2014; 25: 1458