Synlett 2015; 26(16): 2306-2312
DOI: 10.1055/s-0034-1378823
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot, Three-Component Synthesis of 1,8-Naphthyridine Derivatives from Heterocyclic Ketene Aminals, Malononitrile Dimer, and Aryl Aldehydes

Feilong Sun
a   Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn   Email: lizhong@ecust.edu.cn
,
Fengjuan Zhu
a   Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn   Email: lizhong@ecust.edu.cn
,
Xusheng Shao*
a   Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn   Email: lizhong@ecust.edu.cn
,
Zhong Li*
a   Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. of China   Email: shaoxusheng@ecust.edu.cn   Email: lizhong@ecust.edu.cn
b   Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 19 May 2015

Accepted after revision: 24 June 2015

Publication Date:
10 August 2015 (online)


Abstract

An efficient and versatile method was developed for the access of multisubstituted 1,8-naphthyridine derivatives through a one-pot, three-component protocol from heterocyclic ketene animals, malononitrile dimer, and aryl aldehydes in high yields. The 1,8-naphthyridines were formed via Knoevenagel condensation, aza–ene reaction, imine–enamine tautomerization, and intramolecular cyclization.

Supporting Information

 
  • References and Notes

    • 1a Rudys S, Ríos-Luci C, Pérez-Roth E, Cikotiene I, Padrón JM. Bioorg. Med. Chem. Lett. 2010; 20: 1504
    • 1b Johns BA, Weatherhead JG, Allen SH, Thompson JB, Garvey EP, Foster SA, Jeffrey JL, Miller WH. Bioorg. Med. Chem. Lett. 2009; 19: 1802
    • 2a Manera C, Saccomanni G, Malfitano AM, Bertini S, Castelli F, Laezza C, Ligresti A, Lucchesi V, Tuccinardi T, Rizzolio F, Bifulco M, Di Marzo V, Giordano A, Macchia M, Martinelli A. Eur. J. Med. Chem. 2012; 52: 284
    • 2b Kuramoto Y, Ohshita Y, Yoshida J, Yazaki A, Shiro M, Koike T. J. Med. Chem. 2003; 46: 1905
    • 2c Tian W, Yougnia R, Depauw S, Lansiaux A, David-Cordonnier M.-H, Pfeiffer B, Kraus-Berthier L, Léonce S, Pierré A, Dufat H, Michel S. J. Med. Chem. 2014; 57: 10329
    • 3a Huang XG, Zhang AQ, Chen DL, Jia ZH, Li XS. Bioorg. Med. Chem. Lett. 2010; 20: 2859
    • 3b Huang X, Chen D, Wu N, Zhang A, Jia Z, Li X. Bioorg. Med. Chem. Lett. 2009; 19: 4130
    • 4a Roma G, Di Braccio M, Grossi G, Piras D, Ballabeni V, Tognolini M, Bertoni S, Barocelli E. Eur. J. Med. Chem. 2010; 45: 352
    • 4b Di Braccio M, Grossi G, Roma GD, Piras D, Mattioli F, Gosmar M. Eur. J. Med. Chem. 2008; 43: 584
  • 5 Nam TG, Rector CL, Kim HY, Sonnen AF. P, Meyer R, Nau WM, Atkinson J, Rintoul J, Pratt DA, Porter NA. J. Am. Chem. Soc. 2007; 129: 10211
    • 6a Silva D, Chioua M, Samadi A, Carreiras MC, Jimeno ML, Mendes E, de los Ríos C, Romero A, Villarroya M, López MG, Marco-Contelles J. Eur. J. Med. Chem. 2011; 46: 4676
    • 6b de los Ríos C, Egea J, Marco-Contelles J, León R, Samadi A, Iriepa I, Moraleda I, Gálvez E, García AG, López MG, Villarroya M, Romero A. J. Med. Chem. 2010; 53: 5129
    • 7a Blum CA, Caldwell T, Zheng XZ, Bakthavatchalam R, Capitosti S, Brielmann H, De Lombaert S, Kershaw MT, Matson D, Krause JE, Cortright D, Crandall M, Martin WJ, Murphy BA, Boyce S, Jones AB, Mason G, Rycroft W, Perrett H, Conley R, Burnaby-Davies N, Chenard BL, Hodgett KJ. J. Med. Chem. 2010; 53: 3330
    • 7b Raboisson P, DesJarlais RL, Reed R, Lattanze J, Chaikin M, Manthey CL, Tomczuk BE, Marugán JJ. Eur. J. Med. Chem. 2007; 42: 334
    • 8a Daw P, Petakamsetty R, Sarbajna A, Laha S, Ramapanicker R, Bera JK. J. Am. Chem. Soc. 2014; 136: 13987
    • 8b Daw P, Ghatak T, Doucet H, Bera JK. Organometallics 2013; 32: 4306
    • 8c Kaveevivitchai N, Chitta R, Zong RF, El Ojaimi M, Thummel RP. J. Am. Chem. Soc. 2012; 134: 10721
    • 9a Tao J, Song P, Sato Y, Nishizawa S, Teramae N, Tonga A, Xiang Y. Chem. Commun. 2015; 51: 929
    • 9b Li HJ, Fu WF, Li L, Gan X, Mu WH, Chen WQ, Duan XM, Song HB. Org. Lett. 2010; 12: 2924
  • 10 Ghosh K, Sen T, Fröhlich R. Tetrahedron Lett. 2007; 48: 2935
    • 11a El Azab IH, El Rady EA. J. Heterocycl. Chem. 2012; 49: 135
    • 11b Bunce RA, Nammalwar B. J. Heterocycl. Chem. 2012; 49: 658
    • 11c Bennie LS, Burton PM, Morris JA. Tetrahedron Lett. 2011; 52: 4799
    • 11d Huang X, Zhang A, Chen D, Jia Z, Li X. Bioorg. Med. Chem. Lett. 2010; 20: 2859
    • 11e Kumar V, Jaggi M, Singh AT, Madaan A, Sanna V, Singh P, Sharma PK, Irchhaiya R, Burman AC. Eur. J. Med. Chem. 2009; 44: 3356
    • 11f Roma G, Grossi G, Braccio MD, Piras D, Ballabeni V, Tognolini M, Bertoni S, Barocelli E. Eur. J. Med. Chem. 2008; 43: 1665
    • 12a Kalisiak J, Ralph EC, Cashman JR. J. Med. Chem. 2012; 55: 465
    • 12b Shao XS, Lee PW, Liu ZW, Xu XY, Li Z, Qian XH. J. Agric. Food Chem. 2011; 59: 2943
    • 12c Tian ZZ, Shao XS, Li Z, Qian XH, Huang QC. J. Agric. Food Chem. 2007; 55: 2288
    • 12d Yan SJ, Liu YJ, Chen YL, Liu L, Liu J. Bioorg. Med. Chem. Lett. 2010; 20: 5225
    • 12e Wang K.-M, Yan S.-J, Lin J. Eur. J. Org. Chem. 2014; 6: 1129
    • 12f Wen LR, Li ZR, Li M, Cao H. Green Chem. 2012; 14: 707
    • 12g Li M, Shao P, Wang SW, Kong W, Wen LR. J. Org. Chem. 2012; 77: 8956
    • 12h Li M, Zhou ZM, Wen LR, Qiu ZX. J. Org. Chem. 2011; 76: 3054
    • 13a Alizadeh A, Rezvanian A. Helv. Chim. Acta 2012; 95: 152
    • 13b Wen LR, Jiang CY, Li M, Wang L. Tetrahedron 2011; 67: 293
    • 13c Sucunza D, Samadi A, Chioua M, Silva DB, Yunta C, Infantes L, Carreiras MC, Soriano E, Marco-Contelles J. Chem. Commun. 2011; 47: 5043
    • 13d Huang ZT, Wang MX. J. Org. Chem. 1992; 57: 184
    • 14a Tan CK, Yeung YY. Chem. Commun. 2013; 49: 7985
    • 14b Brauch S, van Berkel SS, Westermann B. Chem. Soc. Rev. 2013; 42: 4948
    • 14c Vlaar T, Maes BU. W, Ruijter E, Orru RV. A. Angew. Chem. Int. Ed. 2013; 52: 7084
    • 14d Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 14e Sunderhaus JD, Martin SF. Chem. Eur. J. 2009; 15: 1300
    • 14f Groenendaal B, Ruijter E, Orru RV. A. Chem. Commun. 2008; 43: 5474
    • 14g Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
    • 15a Sun J, Sun Y, Gong H, Xie YJ, Yan CG. Org. Lett. 2012; 14: 5172
    • 15b Terzidis MA, Zarganes-Tzitzikas T, Tsimenidis C, Stephanidou-Stephanatou J, Tsoleridis CA, Kostakis GE. J. Org. Chem. 2012; 77: 9018
    • 15c Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 15d Toure BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 15e Ismabery N, Lavila R. Chem. Eur. J. 2008; 14: 8444
    • 15f Balme G, Bossharth E, Monteiro N. Eur. J. Org. Chem. 2003; 21: 4101
    • 16a Zou MM, Zhu FJ, Xue T, Ren LP, Shao XS, Li Z. Chin. Chem. Lett. 2014; 25: 1515
    • 16b Chen NY, Ren LP, Zou MM, Xu ZP, Shao XS, Xu XY, Li Z. Chin. Chem. Lett. 2014; 25: 197
    • 16c Xu RB, Xia R, Luo M, Xu XY, Cheng JG, Shao XS, Li Z. J. Agric. Food Chem. 2014; 62: 381
    • 16d Ye ZJ, Shi LN, Shao XS, Xu XY, Xu ZP, Li Z. J. Agric. Food Chem. 2013; 61: 312
    • 16e Lu S, Shao X, Li Z, Xu Z, Zhao S, Wu Y, Xu X. J. Agric. Food Chem. 2012; 60: 322
  • 17 Typical Procedure for the Synthesis of 4 Heterocyclic ketene aminals (1 mmol), aryl aldehydes (1.2 mmol), malononitrile dimer (1.5 mmol), AcOH (1 mmol), piperidine (1 mmol), and EtOH (10 mL) were stirred at refluxing for 1 h. After completion of the reaction (confirmed by TLC), the reaction mixture was filtered to afford the crude product, which was further washed with 95% EtOH to give pure product 4. The structures of the products were well characterized by NMR and HRMS studies. The characterization data of representative compounds 4a and 4u are given below. Compound 4a: light yellow solid; mp 300.9–302.0 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.33 (s, 1 H), 7.37 (d, J = 7.6 Hz, 2 H), 7.25 (d, J = 7.6 Hz, 2 H), 6.41 (s, 2 H), 6.24 (s, 2 H), 5.40 (s, 1 H), 4.08 (t, 2 H), 3.89–3.73 (m, 2 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 159.8, 154.2, 152.4, 149.1, 142.5, 130.9, 129.7, 127.6, 116.6, 106.6, 92.6, 69.9, 44.4, 43.3, 36.6 ppm. ESI-HRMS: m/z calcd for C17H14 35ClN7O2 [M – H]: 382.0898; found: 382.0811; calcd for C17H14 37ClN7O2 [M – H]: 384.0898; found: 384.0771 Compound 4u: light yellow solid; mp 281.4–282.0 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 11.49 (s, 1 H), 8.07 (d, J = 8.4 Hz, 2 H), 7.61 (d, J = 8.4 Hz, 2 H), 6.50 (d, 4 H), 5.66 (s, 1 H), 4.08 (m, 2 H), 3.51 (m, 2 H), 2.04 (m, 2 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 159.2, 154.8, 151.0, 150.6, 149.2, 146.1,128.9, 123.0, 116.3, 107.8, 91.9, 70.5 41.3, 38.7, 35.8, 19.5 ppm. ESI-HRMS: m/z calcd for C18H16N8O4 [M – H]: 407.1295; found: 407.1216.