Synthesis 2015; 47(14): 1990-2016
DOI: 10.1055/s-0034-1378837
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Chiral Phosphoric Acid Catalyzed Asymmetric Reactions for the Synthesis of Enantiopure Indole Derivatives

Hua Wu*
a  School of Chemical Engineering, Shandong University of Technology, 12 Zhangzhou Road, Zibo 255049, P. R. of China   Email: [email protected]
,
Yu-Ping He
a  School of Chemical Engineering, Shandong University of Technology, 12 Zhangzhou Road, Zibo 255049, P. R. of China   Email: [email protected]
,
Feng Shi*
b  School of Chemistry & Chemical Engineering, and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 01 April 2015

Accepted after revision: 23 May 2015

Publication Date:
24 June 2015 (online)


Abstract

Chiral indole derivatives are an intriguing class of heterocyclic compounds; their structural motifs are frequently found in natural products and synthetic compounds with significant bioactivity. Among many synthetic transformations leading to the production of enantiopure indole derivatives, chiral phosphoric acid catalyzed reactions are the most attractive methodologies, since these reactions can directly afford enantiomerically pure indole derivatives from readily accessible starting materials under mild conditions. In this review, the most recent achievements in this research area have been gathered and classified according to different reaction types for the synthesis of enantioenriched indole derivatives under the catalysis of chiral phosphoric acids.

1 Introduction

2 Chiral Phosphoric Acid Catalyzed Asymmetric Addition Reactions

2.1 1,2-Addition Reactions

2.2 1,4-Addition Reactions

3 Chiral Phosphoric Acid Catalyzed Asymmetric Cycloaddition Reactions

3.1 [3+2] Reactions

3.2 [4+2] Reactions

3.3 [3+3] Reactions

4 Chiral Phosphoric Acid Catalyzed Asymmetric Cascade Reactions

4.1 Cascade Reactions

4.2 Transition-Metal-Cocatalyzed Cascade Reactions

4.3 Other Organocatalyst-Cocatalyzed Cascade Reactions

5 Other Reactions Catalyzed by Chiral Phosphoric Acids

5.1 Aza-Claisen Rearrangement

5.2 Kinetic Resolution

5.3 Fischer Indolization

6 Conclusions and Perspective

 
  • References

    • 1a Sundberg RJ. The Chemistry of Indoles . Academic; New York: 1996
    • 1b Rahman A. Indole Alkaloids . Harwood Academic; Amsterdam: 1988
    • 1c Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1d Ryan KS, Drennan CL. Chem. Biol. 2009; 16: 351
    • 1e Ishikura M, Yamada K, Abe T. Nat. Prod. Rep. 2010; 17: 1630

      For reviews, see:
    • 2a You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 2b Zeng M, You S.-L. Synlett 2010; 1289
    • 2c Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 2d Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 2e Cheng D.-J, Ishihara Y, Tan B, Barbas III CF. ACS Catal. 2014; 4: 743
    • 2f Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
  • 3 Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 4a Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For some reviews:
    • 4b Akiyama T. Chem. Rev. 2007; 107: 5744
    • 4c Terada M. Chem. Commun. 2008; 4097
    • 4d Terada M. Synthesis 2010; 1929
    • 4e Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 4f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 5a Jia Y.-X, Zhong J, Zhu S.-F, Zhang C.-M, Zhou Q.-L. Angew. Chem. Int. Ed. 2007; 46: 5565
    • 5b Terada M, Yokoyama S, Sorimachi K, Uraguchi D. Adv. Synth. Catal. 2007; 349: 1863
    • 5c Rueping M, Nachtsheim BJ. Synlett 2010; 119
    • 5d Kashikura W, Itoh J, Mori K, Akiyama T. Chem. Asian J. 2010; 5: 470
    • 5e Rueping M, Raja S, Núñez A. Adv. Synth. Catal. 2011; 353: 563
    • 5f Yin Q, You S.-L. Chem. Sci. 2011; 2: 1344
    • 5g Husmann R, Sugiono E, Mersmann S, Raabe G, Rueping M, Bolm C. Org. Lett. 2011; 13: 1044
    • 5h Zhang J.-W, Xu Z, Gu Q, Shi X.-X, Leng X.-B, You S.-L. Tetrahedron 2012; 68: 5263
  • 6 Feng J.-C, Yan W.-J, Wang D, Li P, Sun Q.-T, Wang R. Chem. Commun. 2012; 48: 8003
    • 7a Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 7b Martin NJ. A, List B. J. Am. Chem. Soc. 2006; 128: 13368
    • 7c Mukherjee S, List B. J. Am. Chem. Soc. 2007; 129: 11336
    • 7d Wang X.-W, List B. Angew. Chem. Int. Ed. 2008; 47: 1119
  • 8 Courant T, Kumarn S, He L, Retailleau P, Masson G. Adv. Synth. Catal. 2013; 355: 836
  • 9 Aranzamendi E, Sotomayor N, Lete E. J. Org. Chem. 2012; 77: 2986
  • 10 Yin Q, Wang S.-G, You S.-L. Org. Lett. 2013; 15: 2688
  • 11 Zhang H.-H, Wang Y.-M, Xie Y.-W, Zhu Z.-Q, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 7141
  • 12 Fang F, Hua G.-H, Shi F, Li P.-F. Org. Biomol. Chem. 2015; 13: 4395
  • 13 Wu K, Jiang Y.-J, Fan Y.-S, Sha D, Zhang S.-Q. Chem. Eur. J. 2013; 19: 474

    • For reviews, see:
    • 14a Lorenz M, Van Linn ML, Cook JM. Curr. Org. Synth. 2010; 7: 189
    • 14b Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
  • 15 Seayad J, Seayad AM, List B. J. Am. Chem. Soc. 2006; 128: 1086
  • 16 Huang D, Xu F.-X, Lin X.-F, Wang Y.-G. Chem. Eur. J. 2012; 19: 3148
  • 17 Li X.-J, Chen D, Gu H.-R, Lin X.-F. Chem. Commun. 2014; 50: 7538
  • 18 Zhang K.-F, Nie J, Guo R, Zheng Y, Ma J.-A. Adv. Synth. Catal. 2013; 355: 3497
  • 19 Kano T, Takechi R, Kobayashi R, Maruoka K. Org. Biomol. Chem. 2014; 12: 724
  • 20 Fan Y.-S, Jiang Y.-J, An D, Sha D, Antilla JC, Zhang S.-Q. Org. Lett. 2014; 16: 6112
  • 21 Romano C, Jia M.-Q, Monari M, Manoni E, Bandini M. Angew. Chem. Int. Ed. 2014; 53: 13854

    • For selected reviews, see:
    • 22a Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 22b Wang L, Chen Y, Xiao J. Asian J. Org. Chem. 2014; 3: 1036

    • For an early example involving a 3-indolylmethanol intermediate, see:
    • 22c Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 22d Liang T, Zhang Z.-J, Antilla JC. Angew. Chem. Int. Ed. 2010; 49: 9734
    • 22e Terada M, Moriya K, Kanomata K, Sorimachi K. Angew. Chem. Int. Ed. 2011; 50: 12586
    • 22f He Q.-L, Sun F.-L, Zheng X.-J, You S.-L. Synlett 2009; 1111
  • 23 Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
  • 24 Guo C, Song J, Huang J.-Z, Chen P.-H, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046
  • 25 Song L, Guo Q.-X, Li X.-C, Tian J, Peng Y.-G. Angew. Chem. Int. Ed. 2012; 51: 1899
  • 26 Wang S.-G, Han L, Zeng M, Sun F.-L, Zhang W, You S.-L. Org. Biomol. Chem. 2012; 10: 3202
  • 27 Song J, Guo C, Adele A, Yin H, Gong L.-Z. Chem. Eur. J. 2013; 19: 3319
  • 28 Zhuo M.-H, Jiang Y.-J, Fan Y.-S, Gao Y, Liu S, Zhang S.-Q. Org. Lett. 2014; 16: 1096
  • 29 Liu Y, Zhang H.-H, Zhang Y.-C, Jiang Y, Shi F, Tu S.-J. Chem. Commun. 2014; 50: 12054
  • 30 Tan W, Du B.-X, Li X, Zhu X, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 4635
  • 31 Sun X.-X, Du B.-X, Zhang H.-H, Ji L, Shi F. ChemCatChem 2015; 7: 1211
  • 32 Tang X.-D, Li S, Guo R, Nie J, Ma J.-A. Org. Lett. 2015; 17: 1389
  • 33 Sun F.-L, Zheng X.-J, Gu Q, He Q.-L, You S.-L. Eur. J. Org. Chem. 2010; 47
    • 34a Xu B, Shi L.-L, Zhang Y.-Z, Wu Z.-J, Fu L.-N, Luo C.-Q, Zhang L.-X, Peng Y.-G, Guo Q.-X. Chem. Sci. 2014; 5: 1988
    • 34b Rueping M, Nachtsheim BJ, Moreth SA, Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
  • 35 Qi S, Liu C.-Y, Ding J.-Y, Han F.-S. Chem. Commun. 2014; 50: 8605
  • 36 Zhao W.-X, Wang Z.-B, Chu B.-Y, Sun J.-W. Angew. Chem. Int. Ed. 2015; 54: 1910
  • 37 Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
  • 38 Wang Z.-B, Ai F.-J, Wang Z, Zhao W.-X, Zhu G.-Y, Lin Z.-Y, Sun J.-W. J. Am. Chem. Soc. 2015; 137: 383
    • 39a Cai Q, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2010; 49: 8666
    • 39b Zhang J.-W, Cai Q, Shi X.-X, Zhang W, You S.-L. Synlett 2011; 1239
    • 39c Zeng M, Zhang W, You S.-L. Chin. J. Chem. 2012; 30: 2615
    • 40a Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2008; 47: 4016
    • 40b Bachu P, Akiyama T. Chem. Commun. 2010; 46: 4112
    • 40c Sakamoto T, Itoh J, Mori K, Akiyama T. Org. Biomol. Chem. 2010; 8: 5448
    • 40d Mori K, Wakazawa M, Akiyama T. Chem. Sci. 2014; 5: 1799
    • 41a Girgis AS. Eur. J. Med. Chem. 2009; 44: 91
    • 41b Murugan R, Anbazhagan S, Narayanan SS. Eur. J. Med. Chem. 2009; 44: 3272
    • 41c Kumar RR, Perumal S, Senthilkumar P, Yogeeswari P, Sriram D. Eur. J. Med. Chem. 2009; 44: 3821
    • 41d Thangamani A. Eur. J. Med. Chem. 2010; 45: 6120
    • 41e Karthikeyan SV, Bala BD, Raja VP. A, Perumal S, Yogeeswari P, Sriram D. Bioorg. Med. Chem. Lett. 2010; 20: 350
  • 42 Shi F, Tao Z.-L, Luo S.-W, Tu S.-J, Gong L.-Z. Chem. Eur. J. 2012; 18: 6885
  • 43 Shi F, Zhu R.-Y, Liang X, Tu S.-J. Adv. Synth. Catal. 2013; 355: 2447
  • 44 Wang C.-S, Zhu R.-Y, Zheng J, Shi F, Tu S.-J. J. Org. Chem. 2015; 80: 512
  • 45 Guo C, Song J, Gong L.-Z. Org. Lett. 2013; 15: 2676
  • 46 Hong L, Kai M, Wu C.-Y, Sun W.-S, Zhu G.-M, Li G.-F, Yao X.-J, Wang R. Chem. Commun. 2013; 49: 6713
  • 47 Zhang C, Zhang L.-X, Qiu Y, Xu B, Zong Y, Guo Q.-X. RSC Adv. 2014; 4: 6916
  • 48 Tan W, Li X, Gong Y.-X, Ge M.-D, Shi F. Chem. Commun. 2014; 50: 15901
  • 49 Shi F, Zhang H.-H, Sun X.-X, Liang J, Fan T, Tu S.-J. Chem. Eur. J. 2015; 21: 3465
  • 51 Liao L.-H, Shu C, Zhang M.-M, Liao Y.-J, Hu X.-Y, Zhang Y.-H, Wu Z.-J, Yuan W.-C, Zhang X.-M. Angew. Chem. Int. Ed. 2014; 53: 10471

    • For selected reviews, see:
    • 52a Boger DL, Weinreb SM. Hetero Diels–Alder Methodology in Organic Synthesis . Academic Press; San Diego: 1987. Chap. 2
    • 52b Tietze LF, Kettschau G. Top. Curr. Chem. 1997; 189: 1
    • 52c Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
    • 52d Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 52e Kouznetsov VV. Tetrahedron 2009; 65: 2721
  • 53 Chen Z.-L, Wang B.-L, Wang Z.-B, Zhu G.-Y, Sun J.-W. Angew. Chem. Int. Ed. 2013; 52: 2027
  • 54 Tian X, Hofmann N, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 2997
  • 55 Wang Y, Tu M.-S, Yin L, Sun M, Shi F. J. Org. Chem. 2015; 80: 3223
  • 56 Shi F, Xing G.-J, Zhu R.-Y, Tan W, Tu S.-J. Org. Lett. 2013; 15: 128
  • 57 Zhang H.-H, Sun X.-X, Liang J, Wang Y.-M, Zhao C.-C, Shi F. Org. Biomol. Chem. 2014; 12: 9539
  • 58 Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 59a Shi F, Zhu R.-Y, Dai W, Wang C.-S, Tu S.-J. Chem. Eur. J. 2014; 20: 2597
    • 59b Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
  • 60 Dai W, Lu H, Li X, Shi F, Tu S.-J. Chem. Eur. J. 2014; 20: 11382
    • 61a Cai Q, Liu C, Liang X.-W, You S.-L. Org. Lett. 2012; 14: 4588
    • 61b Rueping M, Volla CM. R. RSC Adv. 2011; 1: 79
  • 62 Duan D.-H, Yin Q, Wang S.-G, Gu Q, You S.-L. Acta Chim. Sin. 2014; 72: 1001
  • 63 Zhang Z.-H, Antilla JC. Angew. Chem. Int. Ed. 2012; 51: 11778
  • 64 Aillaud I, Barber DM, Thompson AL, Dixon DJ. Org. Lett. 2013; 15: 2946
  • 65 Lackner AD, Samant AV, Toste FD. J. Am. Chem. Soc. 2013; 135: 14090
  • 66 Wang S.-G, Zhang W, You S.-L. Org. Lett. 2013; 15: 1488
  • 67 Wang Y, Shi F, Yao X.-X, Sun M, Dong L, Tu S.-J. Chem. Eur. J. 2014; 20: 15047
  • 68 Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
  • 69 Lombardo VM, Thomas CD, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 12910
  • 70 Xie W.-Q, Jiang G.-D, Liu H, Hu J.-D, Pan X.-X, Zhang H, Wan X.-L, Lai Y.-S, Ma D.-W. Angew. Chem. Int. Ed. 2013; 52: 12924
  • 71 Liu H, Jiang G.-D, Pan X.-X, Wan X.-L, Lai Y.-S, Ma D.-W, Xie W.-Q. Org. Lett. 2014; 16: 1908
  • 72 Nelson HM, Reisberg SH, Shunatona HP, Patel JS, Toste FD. Angew. Chem. Int. Ed. 2014; 53: 5600

    • For selected reviews, see:
    • 73a Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
    • 73b Vaxelaire C, Winter P, Christmann M. Angew. Chem. Int. Ed. 2011; 50: 3605
    • 73c Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 73d Shi F, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 11423
    • 73e Lv F, Liu S, Hu W. Asian J. Org. Chem. 2013; 2: 824
    • 73f Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 73g Xing D, Hu W. Tetrahedron Lett. 2014; 55: 777
    • 73h Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 73i Yang Z.-P, Zhang W, You S.-L. J. Org. Chem. 2014; 79: 7785
    • 74a Cai Q, Liang X.-W, Wang S.-G, Zhang J.-W, Zhang X, You S.-L. Org. Lett. 2012; 14: 5022
    • 74b Cai Q, Zhao Z.-A, You S.-L. Angew. Chem. Int. Ed. 2009; 48: 7428
    • 75a Hu W, Xu X, Zhou J, Liu W.-J, Huang H, Hu J, Yang L, Gong L.-Z. J. Am. Chem. Soc. 2008; 130: 7782
    • 75b Qian Y, Xu X, Jiang L, Prajapati D, Hu W. J. Org. Chem. 2010; 75: 7483
    • 75c Xu X, Qian Y, Yang L, Hu W. Chem. Commun. 2011; 47: 797
    • 75d Jiang J, Xu H.-D, Xi J.-B, Ren B.-Y, Lv F.-P, Guo X, Jiang L.-Q, Zhang Z.-Y, Hu W.-H. J. Am. Chem. Soc. 2011; 133: 8428
    • 75e Davies HM. L, Hedley SJ. Chem. Soc. Rev. 2007; 36: 1109
    • 75f Qiu H, Zhang D, Liu S, Qiu L, Zhou J, Qian Y, Zhai C, Hu W. Acta Chim. Sin. 2012; 70: 2484
    • 75g Qiu H, Li M, Jiang L.-Q, Lv F.-P, Zan L, Zhai C.-W, Doyle MP, Hu W.-H. Nat. Chem. 2012; 4: 733
    • 75h Ren L, Lian X.-L, Gong L.-Z. Chem. Eur. J. 2013; 19: 3315
  • 76 Cai Q, Liang X.-W, Wang S.-G, You S.-L. Org. Biomol. Chem. 2013; 11: 1602
  • 77 Shi Y.-C, Wang S.-G, Yin Q, You S.-L. Org. Chem. Front. 2014; 1: 39

    • For selected examples:
    • 78a Han Z.-Y, Xiao H, Chen X.-H, Gong L.-Z. J. Am. Chem. Soc. 2009; 131: 9182
    • 78b Liu X.-Y, Che C.-M. Org. Lett. 2009; 11: 4204
    • 78c Muratore ME, Holloway CA, Pilling AW, Storer RI, Trevitt G, Dixon DJ. J. Am. Chem. Soc. 2009; 131: 10796
    • 78d Wang C, Han Z.-Y, Luo H, Gong L.-Z. Org. Lett. 2010; 12: 2266
    • 78e Han Z.-Y, Chen D.-F, Wang Y.-Y, Guo R, Wang P.-S, Wang C, Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
    • 78f Patil NT, Mutyala AK, Konala A, Tella RB. Chem. Commun. 2012; 48: 3094
    • 78g Wu H, He Y.-P, Gong L.-Z. Org. Lett. 2013; 15: 460
    • 78h Gregory AW, Jakubec P, Turner P, Dixon DJ. Org. Lett. 2013; 15: 4330
  • 79 Xu B, Guo Z.-L, Jin W.-Y, Wang Z.-P, Peng Y.-G, Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
  • 80 Maity P, Pemberton RP, Tantillo DJ, Tambar UK. J. Am. Chem. Soc. 2013; 135: 16380
  • 81 Wu X.-S, Tian S.-K. Chem. Commun. 2012; 48: 898
  • 82 Saito K, Shibata Y, Yamanaka M, Akiyama T. J. Am. Chem. Soc. 2013; 135: 11740
    • 83a Müller S, Webber MJ, List B. J. Am. Chem. Soc. 2011; 133: 18534
    • 83b Martínez A, Webber MJ, Müller S, List B. Angew. Chem. Int. Ed. 2013; 52: 9486
  • 84 Kötzner L, Webber MJ, Martínez A, Fusco CD, List B. Angew. Chem. Int. Ed. 2014; 53: 5202