Synlett 2014; 25(20): 2933-2937
DOI: 10.1055/s-0034-1378916
letter
© Georg Thieme Verlag Stuttgart · New York

Cu-Catalyzed Asymmetric Conjugate Addition of Dialkylzincs to Enones Using a (±)-trans-1,2-Cyclohexanediamine-Based Bis(NHC) Derived from l-Leucinol

Shun Kamihigashi
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Fax: +81(6)63394026   Email: satoshi@kansai-u.ac.jp
,
Naoatsu Shibata
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Fax: +81(6)63394026   Email: satoshi@kansai-u.ac.jp
,
Satoshi Sakaguchi*
Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Fax: +81(6)63394026   Email: satoshi@kansai-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 25 August 2014

Accepted after revision: 08 October 2014

Publication Date:
29 October 2014 (online)


Abstract

A hydroxyamide-functionalized azolium salt as the precursor of a (±)-trans-1,2-cyclohexanediamine-based bis(NHC) ­ligand was designed and synthesized from readily accessible l-leucinol. The combination of a Cu salt with this chiral ligand precursor promoted the asymmetric conjugate addition of Et2Zn to 2-cyclohexen-1-one at room temperature without the need for temperature control to afford the corresponding 1,4-adduct with up to 95% ee.

Supporting Information

 
  • References and Notes


    • For selected recent reviews, see:
    • 1a Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
    • 1b Wencel J, Mauduit M, Hénon H, Kehrli S, Alexakis A. Aldrichimica Acta 2009; 42: 43
    • 1c Alexakis A, Bäckvall JE, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
    • 1d Hoveyda AH, Hird AW, Kacprzynski MA. Chem. Commun. 2004; 1779
    • 1e Alexakis A, Benhaim C. Eur. J. Org. Chem. 2002; 3221
  • 2 Fraser PK, Woodward S. Tetrahedron Lett. 2001; 42: 2747
    • 4a Guillen F, Winn CL, Alexakis A. Tetrahedron: Asymmetry 2001; 12: 2083
    • 4b Pytkowicz J, Roland S, Mangeney P. Tetrahedron: Asymmetry 2001; 12: 2087
    • 4c Alexakis A, Winn CL, Guillen F, Pytkowicz J, Roland S, Mangeney P. Adv. Synth. Catal. 2003; 345: 345
    • 4d Winn CL, Guillen F, Pytkowicz J, Roland S, Mangeney P, Alexakis A. J. Organomet. Chem. 2005; 690: 5672
    • 4e Matsumoto Y, Yamada K.-i, Tomioka K. J. Org. Chem. 2008; 73: 4578
    • 4f Lee K.-s, Hoveyda AH. J. Org. Chem. 2009; 74: 4455
    • 5a Arnold PL, Rodden M, Davis KM, Scarisbrick AC, Blake AJ, Wilson C. Chem. Commun. 2004; 1612
    • 5b Uchida T, Katsuki T. Tetrahedron Lett. 2009; 50: 4741
    • 6a Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237
    • 6b Clavier H, Coutable L, Guillemin J.-C, Mauduit M. Tetrahedron: Asymmetry 2005; 16: 921
    • 6c Clavier H, Guillemin J.-C, Mauduit M. Chirality 2007; 19: 471
    • 6d Rix D, Labat S, Toupet L, Crévisy C, Mauduit M. Eur. J. Inorg. Chem. 2009; 1989
    • 7a Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A. J. Am. Chem. Soc. 2006; 128: 8416
    • 7b Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
    • 7c Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A. Chem. Eur. J. 2010; 16: 9890
    • 7d Müller D, Tissot M, Alexakis A. Org. Lett. 2011; 13: 3040
    • 7e Tissot M, Hernández AP, Müller D, Mauduit M, Alexakis A. Org. Lett. 2011; 13: 1524
    • 8a Lee K.-s, Brown MK, Hird AW, Hoveyda AH. J. Am. Chem. Soc. 2006; 128: 7182
    • 8b Brown MK, May TL, Baxter CA, Hoveyda AH. Angew. Chem. Int. Ed. 2007; 46: 1097
    • 8c May TL, Brown MK, Hoveyda AH. Angew. Chem. Int. Ed. 2008; 47: 7358
    • 8d Brown MK, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 12904
    • 8e May TL, Dabrowski JA, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 736
    • 9a Bonnet LG, Douthwaite RE, Hodgson R. Organometallics 2003; 22: 4384
    • 9b Hodgson R, Douthwaite RE. J. Organomet. Chem. 2005; 690: 5822
    • 9c Dyson G, Frison J.-C, Whitwood AC, Douthwaite RE. Dalton Trans. 2009; 7141
    • 10a Riederer SK. U, Bechlars B, Herrmann WA, Kühn FE. Dalton Trans. 2011; 41
    • 10b Gigler P, Bechlars B, Herrmann WA, Kühn FE. J. Am. Chem. Soc. 2011; 133: 1589
  • 11 Shigeng G, Tang J, Zhang D, Wang Q, Chen Z, Weng L. J. Organomet. Chem. 2012; 700: 223
    • 12a Okamoto M, Yamamoto Y, Sakaguchi S. Chem. Commun. 2009; 7363
    • 12b Shibata N, Okamoto M, Yamamoto Y, Sakaguchi S. J. Org. Chem. 2010; 16: 5707
    • 12c Shibata N, Yoshimura M, Yamada H, Arakawa R, Sakaguchi S. J. Org. Chem. 2012; 77: 4079
    • 12d Dohi K, Kondo J, Yamada H, Arakawa R, Sakaguchi S. Eur. J. Org. Chem. 2012; 7143
  • 13 Analytical and Spectral Data of L1: 1H NMR (400 MHz, DMSO-d 6): δ = 10.58 (br, 2 H), 8.54 (d, J = 8.2 Hz, 2 H), 7.90 (br, 2 H), 7.68–7.66 (m, 2 H), 7.42–7.33 (m, 4 H), 5.76 (br, 2 H), 5.30–5.18 (m, 4 H), 4.65–4.62 (m, 2 H), 3.81 (br, 2 H), 3.41–3.37 (m, 4 H), 2.58 (br, 2 H), 2.49–2.43 (m, 2 H), 2.05 (br, 2 H), 1.83 (br, 2 H), 1.66–1.58 (m, 2 H), 1.36 (t, J = 6.9 Hz, 4 H), 0.89–0.86 (m, 6 H), 0.84–0.81 (m, 6 H). HRMS (ESI2+): m/z calcd for C36H52N6O4 2+: 316.2019; found: 316.2014.
  • 14 General Procedure for the ACA Reaction: To a solution of azolium salt (0.045 mmol) in THF (9 mL) were added Cu salt (0.06 mmol) and enone (1 mmol). After the mixture was cooled to 0 °C, Et2Zn (1 M in hexanes, 3 mmol, 3 mL) was added to the reaction vessel. The color immediately changed from yellow to dark-brown. After stirring at room temperature for 3 h, the reaction was quenched with 10% HCl aq. The resulting mixture was extracted with i-Pr2O (3 × 10 mL) and dried over Na2SO4. The product was purified by silica gel column chromatography (hexane–Et2O).