Synthesis 2015; 47(01): 34-41
DOI: 10.1055/s-0034-1378931
psp
© Georg Thieme Verlag Stuttgart · New York

A Scalable, Chromatography-Free Synthesis of Benzotetramisole

David S. B. Daniels
a   School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK   Fax: +44(1334)463808   Email: ads10@st-andrews.ac.uk
,
Siobhan R. Smith
a   School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK   Fax: +44(1334)463808   Email: ads10@st-andrews.ac.uk
,
Tomas Lebl
a   School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK   Fax: +44(1334)463808   Email: ads10@st-andrews.ac.uk
,
Peter Shapland
b   GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
,
Andrew D. Smith*
a   School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK   Fax: +44(1334)463808   Email: ads10@st-andrews.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 22 August 2014

Accepted after revision: 17 October 2014

Publication Date:
21 November 2014 (online)


Abstract

The scalable, chromatography-free synthesis of the chiral isothiourea benzotetramisole (BTM) in two steps from commercially available materials is presented. A detailed procedure for the synthesis of both enantiomers and the racemate on ca. 10 gram scale is disclosed.

Supporting Information

 
  • References

  • 1 For an excellent review, see: Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
  • 2 Birman VB, Li X. Org. Lett. 2006; 8: 1351
    • 3a Thienpont D, Vanparijs OF. J, Raeymaekers AH. M, Vandenberk J, Demoen PJ. A, Allewijn FT. N, Marsboom RP. H, Niemegeers CJ. E, Schellekens KH. L, Janssen PA. J. Nature 1966; 209: 1084
    • 3b Raeymaekers AH. M, Allewijn FT. N, Vandenberk J, Demoen PJ. A, Van Offenwert TT. T, Janssen PA. J. J. Med. Chem. 1966; 9: 545

      For the use of achiral DHPB-based catalysts, see:
    • 4a Kobayashi M, Okamoto S. Tetrahedron Lett. 2006; 47: 4347
    • 4b Birman VB, Li X, Han Z. Org. Lett. 2007; 9: 37

    • For the introduction of HBTM, see:
    • 4c Birman VB, Li X. Org. Lett. 2008; 10: 1115

    • For the effect of configuration in HBTM-2 and derivatives, see:
    • 4d Yang X, Birman VB. Adv. Synth. Catal. 2009; 351: 2301

    • For the effect of stereodirecting group, see:
    • 4e Joannesse C, Johnston CP, Concellón C, Simal C, Philp D, Smith AD. Angew. Chem. Int. Ed. 2009; 48: 8914
    • 4f Belmessieri D, Joannesse C, Woods PA, MacGregor C, Jones C, Campbell CD, Johnston CP, Duguet N, Concellón C, Bragg RA, Smith AD. Org. Biomol. Chem. 2011; 9: 559

    • Alternatively Okamoto and co-workers have used 4-Mes-DHPB in asymmetric Steglich rearrangements:
    • 4g Viswambharan B, Okimura T, Suzuki S, Okamoto S. J. Org. Chem. 2011; 76: 6678
    • 5a Birman VB, Guo L. Org. Lett. 2006; 8: 4859
    • 5b Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
    • 5c Birman VB, Jiang H, Li X. Org. Lett. 2007; 9: 3237
    • 5d Yang X, Lu G, Birman VB. Org. Lett. 2010; 12: 892
    • 5e Bumbu VD, Birman VB. J. Am. Chem. Soc. 2011; 133: 13902
    • 5f Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB. J. Am. Chem. Soc. 2012; 134: 17605
    • 5g Yang X, Liu P, Houk KN, Birman VB. Angew. Chem. Int. Ed. 2012; 51: 9638
    • 5h Liu P, Yang X, Birman VB, Houk KN. Org. Lett. 2012; 14: 3288
    • 5i Li X, Jiang H, Uffman EW, Guo L, Zhang Y, Yang X, Birman VB. J. Org. Chem. 2012; 77: 1722
    • 5j Bumbu VD, Yang X, Birman VB. Org. Lett. 2013; 15: 2790
    • 6a Shiina I, Nakata K. Tetrahedron Lett. 2007; 48: 8314
    • 6b Shiina I, Nakata K, Onda Y.-s. Eur. J. Org. Chem. 2008; 5887
    • 6c Shiina I, Nakata K, Sugimoto M, Onda Y.-s, Iizumi T, Ono K. Heterocycles 2009; 77: 801
    • 6d Nakata K, Onda Y.-s, Ono K, Shiina I. Tetrahedron Lett. 2010; 51: 5666
    • 6e Shiina I, Nakata K, Ono K, Onda Y.-s, Itagaki M. J. Am. Chem. Soc. 2010; 132: 11629
    • 6f Nakata K, Shiina I. Heterocycles 2010; 80: 169
    • 6g Shiina I, Nakata K, Ono K, Sugimoto M, Sekiguchi A. Chem. Eur. J. 2010; 16: 167
    • 6h Nakata K, Sekiguchi A, Shiina I. Tetrahedron: Asymmetry 2011; 22: 1610
    • 6i Nakata K, Ono K, Shiina I. Heterocycles 2011; 82: 1171
    • 6j Tengeiji A, Nakata K, Ono K, Shiina I. Heterocycles 2012; 86: 1227
    • 6k Shiina I, Nakata K, Ono K, Mukaiyama T. Helv. Chim. Acta 2012; 95: 1891
    • 6l Shiina I, Ono K, Nakata K. Catal. Sci. Technol. 2012; 2: 2200
    • 6m Tengeiji A, Shiina I. Molecules 2012; 17: 7356
    • 6n Shiina I, Umezaki Y, Kuroda N, Iizumi T, Nagai S, Katoh T. J. Org. Chem. 2012; 77: 4885
    • 6o Shiina I, Ono K, Nakahara T. Chem. Commun. 2013; 49: 10700
    • 6p Nakata K, Gotoh K, Ono K, Futami K, Shiina I. Org. Lett. 2013; 15: 1170
    • 7a Zhou H, Xu Q, Chen P. Tetrahedron 2008; 64: 6494
    • 7b Xu Q, Zhou H, Geng X, Chen P. Tetrahedron 2009; 65: 2232
    • 7c Chen P, Zhang Y, Zhou H, Xu Q. Huaxue Xuebao 2010; 68: 1431
    • 7d Ball JC, Brennan P, Elsunaki TM, Jaunet A, Jones S. Tetrahedron: Asymmetry 2011; 22: 253
    • 7e Matsumoto T, Urano Y, Takahashi Y, Mori Y, Terai T, Nagano T. J. Org. Chem. 2011; 76: 3616
    • 7f Klauck MI, Patel SG, Wiskur SL. J. Org. Chem. 2012; 77: 3570
  • 8 Dietz FR, Gröger H. Synthesis 2009; 4208
  • 9 Clark RW, Deaton TM, Zhang Y, Moore MI, Wiskur SL. Org. Lett. 2013; 15: 6132
  • 10 Cortez GS, Tennyson RL, Romo D. J. Am. Chem. Soc. 2001; 123: 7945
    • 11a Purohit VC, Matla AS, Romo D. J. Am. Chem. Soc. 2008; 130: 10478
    • 11b Leverett CA, Purohit VC, Romo D. Angew. Chem. Int. Ed. 2010; 49: 9479
    • 12a Belmessieri D, Morrill LC, Simal C, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2011; 133: 2714
    • 12b Morrill LC, Lebl T, Slawin AM. Z, Smith AD. Chem. Sci. 2012; 3: 2088
    • 12c Simal C, Lebl T, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2012; 51: 3653
    • 12d Morrill LC, Douglas J, Lebl T, Slawin AM. Z, Fox DJ, Smith AD. Chem. Sci. 2013; 4: 4146
    • 12e Belmessieri D, Cordes DB, Slawin AM. Z, Smith AD. Org. Lett. 2013; 15: 3472
    • 12f Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193
    • 12g Stark DG, Morrill LC, Yeh P.-P, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Angew. Chem. Int. Ed. 2013; 52: 11642
    • 12h Morrill LC, Ledingham LA, Couturier J.-P, Bickel J, Harper AD, Fallan C, Smith AD. Org. Biomol. Chem. 2014; 12: 624
    • 12i Yeh P.-P, Daniels DS. B, Cordes DB, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 964
    • 12j Smith SR, Douglas J, Prevet H, Shapland P, Slawin AM. Z, Smith AD. J. Org. Chem. 2014; 79: 1626
    • 12k Morrill LC, Smith SM, Slawin AM. Z, Smith AD. J. Org. Chem. 2014; 79: 1640
    • 12l Smith SR, Leckie SM, Holmes R, Douglas J, Fallan C, Shapland P, Pryde D, Slawin AM. Z, Smith AD. Org. Lett. 2014; 16: 2506
    • 12m Belmessieri D, de la Houpliere A, Calder ED. D, Taylor JE, Smith AD. Chem. Eur. J. 2014; 20: 9762
  • 13 West TH, Daniels DS. B, Slawin AM. Z, Smith AD. J. Am. Chem. Soc. 2014; 136: 4476
    • 14a Liu G, Shirley ME, Van K N, McFarlin RL, Romo D. Nat. Chem. 2013; 5: 1049
    • 14b Abbasov ME, Hudson BM, Tantillo DJ, Romo D. J. Am. Chem. Soc. 2014; 136: 4492
    • 15a Xu Q, Zhou H, Chen P. Huaxue Shiji 2010; 32: 293
    • 15b Xu Q, Zhou H, Chen P. Huaxue Shiji 2010; 32: 298
  • 16 Okamoto S, Sakai Y, Watanabe S, Nishi S, Yoneyama A, Katsumata H, Kosaki Y, Sato R, Shiratori M, Shibuno M, Shishido T. Tetrahedron Lett. 2014; 55: 1909
  • 17 From TCI-UK Ltd.: (R)-BTM P/N: B3296, £ 94.20/1 g; (S)-BTM P/N: B3549, £ 83.45/1 g (accessed 22/08/2014).
  • 18 Racemic 2-phenylglycinol is prohibitively expensive and was obtained by mixing equal amounts of the commercially available (R)- and (S)-2-phenylglycinols.
  • 19 See experimental for details.
  • 20 The site of N-mesylation was determined by 1H-15N HMBC spectroscopy, supported by DFT calculations for the 15N chemical shifts. See Supporting Information for details.
  • 21 Birman states that the addition of MeOH serves to quench additional MsCl, see ref. 1.
  • 22 MeOH was replaced with i-PrOH as it was considered that the by-product i-PrOMs from reaction with sulfene would be less reactive as an alkylating agent than MeOMs, thereby reducing polymeric impurities.
  • 23 Armarego WL. F, Chai CL. L. Purification of Laboratory Chemicals . 6th ed. Butterworth-Heinemann; Oxford: 2009
  • 24 GC analysis indicated >95% conversion of 2-chlorobenzothiazole against o-dichlorobenzene as the internal standard. Approximately 200 μL samples of the reaction mixture at t = 0 and 24 h were taken and diluted to ~1.5 mL in CH2Cl2 for analysis.