Synthesis 2015; 47(02): 159-174
DOI: 10.1055/s-0034-1379396
short review
© Georg Thieme Verlag Stuttgart · New York

N-Fluorobenzenesulfonimide: An Efficient Nitrogen Source for C–N Bond Formation

Yan Li
Department of Chemistry, Northeast Normal University, 5268 Renmin Road, Changchun, 130024, P. R. of China   Email: zhangq651@nenu.edu.cn   Fax: ??Fax??
,
Qian Zhang*
Department of Chemistry, Northeast Normal University, 5268 Renmin Road, Changchun, 130024, P. R. of China   Email: zhangq651@nenu.edu.cn   Fax: ??Fax??
› Author Affiliations
Further Information

Publication History

Received: 04 September 2014

Accepted after revision: 14 October 2014

Publication Date:
20 November 2014 (online)


Abstract

N-Fluorobenzenesulfonimide, an efficient nitrogen source, has been successfully employed as a source of nucleophilic nitrogen or nitrogen radicals for the formation of C–N bonds. This review summarizes recent progress in this field.

1 Introduction

2 NFSI as a Source of Nucleophilic Nitrogen

3 NFSI as a Source of Nitrogen Radicals

4 Other Amination Reactions

5 Conclusions

 
  • References

  • 2 Wagner WJ, Shia GA, Poss AJ. WO 199408955, 1994

    • For reviews, see:
    • 3a Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 3b Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 3c Baudoux J, Cahard D. Org. React. (N. Y.) 2007; 69: 1

      For reviews, see:
    • 4a Engle KM, Mei T.-S, Wang X, Yu J.-Q. Angew. Chem. Int. Ed. 2011; 50: 1478
    • 4b Wang X, Leow D, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 13864
    • 4c Ball ND, Gary JB, Ye Y, Sanford MS. J. Am. Chem. Soc. 2011; 133: 7577
    • 5a Rueda-Becerril M, Sazepin CC, Leung JC. T, Okbinoglu T, Kennepohl P, Paquin J.-F, Sammis GM. J. Am. Chem. Soc. 2012; 134: 4026
    • 5b Halperin SD, Fan H, Chang S, Martin RE, Britton R. Angew. Chem. Int. Ed. 2014; 53: 4690
    • 5c Sibi MP, Landais Y. Angew. Chem. Int. Ed. 2013; 52: 3570
  • 6 Barker TJ, Jarvo ER. Synthesis 2011; 3954
  • 7 Bizet V. Synlett 2012; 23: 2719
  • 8 Roy A, Schneller SW. Org. Lett. 2005; 7: 3889
  • 9 Sibbald PA, Michael FE. Org. Lett. 2009; 11: 1147
  • 10 Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J. Am. Chem. Soc. 2009; 131: 15945
  • 11 Ingalls EL, Sibbald PA, Kaminsky W, Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
  • 12 Qiu S, Xu T, Zhou J, Guo Y, Liu G. J. Am. Chem. Soc. 2010; 132: 2856
  • 13 Xu T, Qiu S, Liu G. J. Organomet. Chem. 2011; 696: 46
  • 14 Xiong T, Li Y, Lv Y, Zhang Q. Chem. Commun. 2010; 46: 6831
  • 15 Zheng Y, Xiong T, Lv Y, Zhang J, Zhang Q. Org. Biomol. Chem. 2013; 11: 7923
  • 16 Sun K, Li Y, Xiong T, Zhang J, Zhang Q. J. Am. Chem. Soc. 2011; 133: 1694
  • 17 Muñiz K, Kirsch J, Chávez P. Adv. Synth. Catal. 2011; 353: 689
  • 18 Xiong T, Li Y, Mao L, Zhang Q, Zhang Q. Chem. Commun. 2012; 48: 2246
  • 19 Tan B, Toda N, Barbas III CF. Angew. Chem. Int. Ed. 2012; 51: 12538
  • 20 Iglesias Á, Álvarez R, de Lera ÁR, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 2225
  • 21 Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
  • 22 Zhang H, Pu W, Xiong T, Li Y, Zhou X, Sun K, Liu Q, Zhang Q. Angew. Chem. Int. Ed. 2013; 52: 2529
  • 23 Kaneko K, Yoshino T, Matsunaga S, Kanai M. Org. Lett. 2013; 15: 2502
  • 24 Zhang B, Studer A. Org. Lett. 2014; 16: 1790
  • 25 Boursalian GB, Ngai M.-Y, Hojczyk KN, Ritter T. J. Am. Chem. Soc. 2013; 135: 13278
  • 26 Liu H.-H, Wang Y, Deng G, Yang L. Adv. Synth. Catal. 2013; 355: 3369
  • 27 De Rosa M, Marwaha VR. Heterocycles 1994; 37: 979
  • 28 Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
  • 29 Ni Z, Zhang Q, Xiong T, Zheng Y, Li Y, Zhang H, Zhang J, Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
  • 30 Tang R.-J, Luo C.-R, Yang L, Li C.-J. Adv. Synth. Catal. 2013; 355: 869
  • 31 Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952