Synlett 2014; 25(20): 2883-2886
DOI: 10.1055/s-0034-1379480
letter
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of (+)-Guaymasol

Sophie Feuillastre
Université de Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire (ICBMS), UMR 5246 CNRS, Bat Raulin, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France   Fax: +33(4)72448136   eMail: piva@univ-lyon1.fr
,
Olivier Piva*
Université de Lyon, Université Lyon 1, Institut de Chimie et de Biochimie Moléculaire et Supramoléculaire (ICBMS), UMR 5246 CNRS, Bat Raulin, 43, Bd du 11 novembre 1918, 69622 Villeurbanne cedex, France   Fax: +33(4)72448136   eMail: piva@univ-lyon1.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 17. Juli 2014

Accepted after revision: 25. September 2014

Publikationsdatum:
17. Oktober 2014 (online)


Abstract

The synthesis of (+)-guaymasol has been achieved from O-methyl chavicol by using a sequence combining a cross-metathesis and an asymmetric dihydroxylation of the newly created double bond. The first step using Grubbs type II catalyst delivered an inseparable 88:12 mixture of E and Z isomers. After treatment with AD-mix-β and deprotection of the benzyl ether by hydrogenolysis, (+)-guaymasol was finally isolated in 84% de and 90% ee.

Supporting Information

 
  • References and Notes

  • 1 Kornprobst J.-M In Substances Naturelles d’Origine Marine . Vol. 1. Tec&Doc Ed; Paris: 2005
    • 2a Lebar MD, Heimbegner JL, Baker BJ. Nat. Prod. Rep. 2007; 24: 774
    • 2b Costa Leal M, Puga J, Serodio J, Gomes NC. M, Calado R. PLoS ONE 2012; 7: e30580
  • 3 Blunt JW, Copp BR, Keyzers RA, Munro MH. G, Prinsep MR. Nat. Prod. Rep. 2014; 31: 160 ; and references therein
  • 4 Trischman JA, Jensen PR, Fenical W. Nat. Prod. Lett. 1998; 11: 279
  • 5 Virolleaud MA, Menant C, Fenet B, Piva O. Tetrahedron Lett. 2006; 47: 5127
  • 6 Lin Z, Marett L, Hughen RW, Flores M, Forteza I, Ammon MA, Concepcion GP, Espino S, Olivera BM, Rosenberg G, Haygood MG, Light AR, Schmidt EW. Bioorg. Med. Chem. Lett. 2013; 23: 4867
  • 7 Fernandes RA, Bodas MS, Kumar P. Tetrahedron 2002; 58: 1223
  • 8 Salim H, Piva O. Tetrahedron Lett. 2007; 48: 2059
  • 9 Bourcet E, Fache F, Piva O. Eur. J. Org. Chem. 2010; 4075
  • 10 Raffier L, Piva O. Eur. J. Org. Chem. 2013; 1124
    • 11a Kotha S, Dipak MK. Tetrahedron 2012; 68: 397
    • 11b Prunet J, Grimaud L In Metathesis in Natural Product Synthesis . Cossy J, Arseniyadis S, Meyer C. Wiley-VCH; Weinheim: 2010: 287
  • 12 Richard J.-A, Yee NgS, Chen DY.-K In Modern Tools for the Synthesis of Complex Bioactive Molecules . Cossy J, Arseniyadis S. John Wiley & Sons; Hoboken: 2012: 155
    • 13a Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 13b Noe MC, Letavic MA, Snow SL. Org. React. 2005; 60: 109
    • 14a Neisius NM, Plietker B. J. Org. Chem. 2008; 73: 3218
    • 14b Beligny S, Eibauer S, Maechling S, Blechert S. Angew. Chem. 2006; 45: 1900
  • 15 Mwangi MT, Schulz MD, Bowden NB. Org. Lett. 2009; 11: 33
    • 16a Hong SH, Sanders DP, Lee CW, Grubbs RH. J. Am. Chem. Soc. 2005; 127: 17160
    • 16b Czaban J, Schertzer BM, Grela K. Adv. Synth. Catal. 2013; 355: 1997
  • 17 Manzini S, Poater A, Nelson DJ, Cavallo L, Slawin AM. Z, Nolan SP. Angew. Chem. Int. Ed. 2014; 53: 8995
  • 18 Krohn K, Vukics K. Synthesis 2007; 2894
  • 19 Olah GA, Narang SC. Tetrahedron 1982; 38: 2225
    • 20a Scott AI. Q. Rev., Chem. Soc. 1965; 19: 1
    • 20b Gresser MJ, Wales SM, Keller PA. Tetrahedron 2010; 66: 6965
  • 21 See the Supporting Information.
    • 22a Meek SJ, O’Brien RV, Llaveria J, Schrock RR, Hoveyda AH. Nature 2011; 471: 461
    • 22b Deraedt C, d’Halluin M, Astruc D. Eur. J. Inorg. Chem. 2013; 4881
    • 22c Fürstner A. Science 2013; 341: 1357
    • 23a Wang C, Haeffner F, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 1939
    • 23b Wang C, Yu M, Kyle AF, Jakubec P, Dixon DJ, Schrock RR, Hoveyda AH. Chem. Eur. J. 2013; 19: 2726
    • 23c Mann TJ, Speed AW. H, Schrock RR, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 8395
    • 24a Keitz BK, Endo K, Herbert MB, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 9686
    • 24b Rosebrugh LE, Herbert MB, Marx VM, Keitz BK, Grubbs RH. J. Am. Chem. Soc. 2013; 135: 1276
    • 24c Occhipinti G, Hansen FR, Törnroos KW, Jensen VR. J. Am. Chem. Soc. 2013; 135: 3331
  • 25 Vassao DG, Gang DR, Koedula T, Jackson B, Pichersky E, Davin LB, Lewis NG. Org. Biomol. Chem. 2006; 4: 2733
  • 26 Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH. J. Am. Chem. Soc. 2012; 134: 693
  • 27 Selected data: Compound 12a: Yield: 56% (104 mg from 500 mg of 5a over 3 steps); colourless oil. 1 H NMR (300 MHz, CDCl3): δ = 0.89 (d, J = 6.6 Hz, 6 H), 1.54–1.75 (m, 1 H), 1.91 (t, J = 6.2 Hz, 2 H), 3.28 (d, J = 6.2 Hz, 2 H), 5.05 (s, 2 H), 5.38–5.62 (m, 2 H), 6.91 (d, J = 8.6 Hz, 2 H), 7.10 (d, J = 8.6 Hz, 2 H), 7.28–7.46 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 22.5, 28.6, 38.4, 42.0, 70.2, 114.9, 127.6, 128.0, 128.7, 129.5, 130.4, 130.6, 133.7, 137.4, 157.2. HRMS (CI): m/z [M + H]+ calcd for C20H24O: 281.1900; found: 281.1902. Compound 12b: Yield: 8% (14 mg from 500 mg of 5a); colourless oil. 1H NMR (300 MHz, CDCl3): δ = 0.94 (d, J = 6.6 Hz, 6 H), 1.60–1.75 (m, 1 H), 2.04 (t, J = 6.7 Hz, 2 H), 3.34 (d, J = 6.7 Hz, 2 H), 5.05 (s, 2 H), 5.41–5.67 (m, 2 H), 6.92 (d, J = 8.5 Hz, 2 H), 7.11 (d, J = 8.6 Hz, 2 H), 7.28–7.48 (m, 5 H). Compound (+)-13a: Yield: 85% (100 mg from 118 mg of 12a/12b); white solid; mp 81–83 °C; [α]D +18.1 (c = 0.5, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 0.94 (d, J = 6.8 Hz, 3 H), 0.92 (d, J = 6.8 Hz, 3 H), 1.20–1.38 (m, 2 H), 1.40–1.59 (m, 1 H), 1.66–1.90 (m, 2 H, OH), 2.67 (dd, J = 13.8, 8.5 Hz, 1 H), 2.85 (dd, J = 13.8, 3.9 Hz, 1 H), 3.51–3.70 (m, 2 H), 5.05 (s, 2 H), 6.94 (d, J = 8.6 Hz, 2 H), 7.15 (d, J = 8.6 Hz, 2 H), 7.26–7.48 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 22.0, 23.8, 24.7, 39.5, 43.0, 70.2, 71.8, 75.6, 115.2, 127.6, 128.1, 128.7, 130.4, 130.5, 137.2, 157.7. HRMS (ESI): m/z [M + Na] calcd for C20H26NaO3: 337.1774; found: 337.1769. Compound rac-13b: Yield: 6% (9 mg from 100 mg of 5b); white solid; mp 81–83 °C. 1H NMR (300 MHz, CDCl3): δ = 0.94 (d, J = 6.5 Hz, 3 H), 0.99 (d, J = 6.7 Hz, 3 H), 1.14–1.38 (m, 2 H), 1.41–1.60 (m, 1 H), 1.66–1.96 (m, 2 H), 2.66 (dd, J = 13.9, 9.6 Hz, 1 H), 2.79 (dd, J = 3.5, 13.9 Hz, 1 H), 3.69–3.87 (m, 2 H), 5.05 (s, 2 H), 6.94 (d, J = 8.6 Hz, 2 H), 7.15 (d, J = 8.6 Hz, 2 H), 7.28–7.47 (m, 5 H). Guaymasol (+)-1: Yield: 78% (55 mg from 100 mg of 13a); colourless oil; [α]D +23.5 (c = 0.4, CHCl3) {see ref. 4: [α]D +30.4 (c = 1.1, CHCl3)}. 1H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 6.9 Hz, 6 H), 1.20–1.37 (m, 1 H), 1.45–1.59 (m, 1 H), 1.74–1.91 (m, 1 H), 1.93 (s, 2 H), 2.66 (dd, J = 13.9, 8.5 Hz, 1 H), 2.83 (dd, J = 13.9, 3.9 Hz, 1 H), 3.52–3.64 (m, 2 H), 6.77 (d, J = 8.5 Hz, 2 H), 7.09 (d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 22.0, 23.8, 24.7, 39.4, 42.9, 71.8, 75.6, 115.7, 130.0, 130.7, 154.5. HRMS (ESI): m/z [M + Na] calcd for C13H20NaO3: 247.1305; found: 247.1297.