Synthesis 2015; 47(06): 807-816
DOI: 10.1055/s-0034-1379640
paper
© Georg Thieme Verlag Stuttgart · New York

3-Aryl-5-vinyl-2-isoxazolines and 3-Aryl-5-vinylisoxazoles from Aryl Nitrile Oxides and Methyl Vinyl Ketone Lithium Enolate: Reaction Limits and Synthetic Utility Exploitation

Antonio Salomone
a   Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari ‘A. Moro’, Via E. Orabona 4, 70125 Bari, Italy   Email: paola.vitale@uniba.it
b   Consorzio Interuniversitario Nazionale Metodologie e Processi Innovativi di Sintesi (CINMPIS) Università degli Studi di Bari ‘A. Moro’, Via E. Orabona 4, 70125 Bari, Italy
,
Antonio Scilimati
a   Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari ‘A. Moro’, Via E. Orabona 4, 70125 Bari, Italy   Email: paola.vitale@uniba.it
,
Paola Vitale*
a   Dipartimento di Farmacia-Scienze del Farmaco Università degli Studi di Bari ‘A. Moro’, Via E. Orabona 4, 70125 Bari, Italy   Email: paola.vitale@uniba.it
› Author Affiliations
Further Information

Publication History

Received: 22 September 2014

Accepted after revision: 17 November 2014

Publication Date:
18 December 2014 (online)


Dedicated to Claudio Salomone, born November 24, 2014

Abstract

3-Aryl-5-hydroxy-5-vinyl-2-isoxazolines were synthesized by reacting aryl nitrile oxides with the lithium enolate of methyl vinyl ketone (MVK) at –78 °C. Fair to good yields are obtained in the case of aryl nitrile oxides bearing electron-withdrawing groups on the aryl moiety or less bulky groups. Conversely, lower yields or no reaction was observed in the presence of hindered aryl nitrile oxides. Such a behavior was confirmed by ab initio calculations of the activation energies for three reactions. A number of 3-aryl-5-vinylisoxazoles were quantitatively obtained by dehydration/aromatization of the corresponding 5-hydroxy-2-isoxazolines under acidic conditions. The side-chain elaboration is reported as a synthetic utility of some vinylisoxazoles and vinylisoxazo­lines.

Supporting Information

 
  • References

    • 1a Pinho e Melo TM. V. D. Curr. Org. Chem. 2005; 9: 925
    • 1b Gandolfig R, Grünanger P In Chemistry of Heterocyclic Compounds: Isoxazoles . Vol. 49, Part 2. Grünanger P, Vita-Finzi P, Dowling JE. Wiley; Hoboken: 1999
    • 1c Cicchi S, Cordero FM, Giomi D. Prog. Heterocycl. Chem. 2012; 24: 317
    • 1d Silva AM. S, Tomé AC, Pinho e Melo TM. V. D, Elguero J. Five-Membered Heterocycles: 1,2-Azoles. Part 2. Isoxazoles and Isothiazoles . In Modern Heterocyclic Chemistry . Vol. 1. Alvarez-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011. Chap. 9, 727-808
    • 1e Nishiwaki N, Kobiro K, Kiyoto H, Hirao S, Sawayama J, Saigo K, Okajima Y, Uehara T, Maki A, Ariga M. Org. Biomol. Chem. 2011; 9: 2832
    • 1f Cecchi L, De Sarlo F, Machetti F. Eur. J. Org. Chem. 2006; 4852
    • 1g Grecian S, Fokin VV. Angew. Chem. Int. Ed. 2008; 47: 8285
    • 2a Pevarello P, Amici R, Brasca MG, Villa M, Varasi M. Targets Heterocycl. Syst. 1999; 3: 301
    • 2b Perrone MG, Malerba P, Uddin MdJ, Vitale P, Panella A, Crews BC, Daniel CK, Ghebreselasie K, Nickels M, Tantawy MN, Manning HC, Marnett LJ, Scilimati A. Eur. J. Med. Chem. 2014; 80: 562
    • 2c Vitale P, Tacconelli S, Perrone MG, Malerba P, Simone L, Scilimati A, Lavecchia A, Dovizio M, Marcantoni E, Bruno A, Patrignani P. J. Med. Chem. 2013; 56: 4277
    • 2d Calvello R, Panaro MA, Carbone ML, Cianciulli A, Perrone MG, Vitale P, Malerba P, Scilimati A. Pharmacol. Res. 2011; 65: 137
    • 2e Vitale P, Perrone MG, Malerba P, Lavecchia A, Scilimati A. Eur. J. Med. Chem. 2014; 74: 606
    • 2f Di Nunno L, Vitale P, Scilimati A, Tacconelli S, Patrignani P. J. Med. Chem. 2004; 47: 4881
  • 3 Tavares A, Livotto PR, Gonçalves PF. B, Merlo AA. J. Braz. Chem. Soc. 2009; 20: 1742
  • 4 Gilchrist TL. J. Chem. Soc., Perkin Trans. 1 1999; 2849
    • 5a Akiba K, Kashiwagi K, Ohyama Y, Yamamoto Y, Ohkata K. J. Am. Chem. Soc. 1985; 107: 2721
    • 5b Kijma M, Nambu Y, Endo T. J. Org. Chem. 1985; 50: 1140
  • 6 Di Nunno L, Scilimati A, Vitale P. Tetrahedron 2005; 61: 2623
  • 7 Kashima C. J. Org. Chem. 1975; 40: 526
    • 8a Di Nunno L, Vitale P, Scilimati A, Simone L, Capitelli F. Tetrahedron 2007; 63: 12388
    • 8b Di Nunno L, Vitale P, Scilimati A. Tetrahedron 2008; 64: 11198
    • 9a Vitale P, Scilimati A. Curr. Org. Chem. 2013; 17: 1986
    • 9b Vitale P, Scilimati A. Synthesis 2013; 45: 2940
    • 9c Trogu E, Cecchi L, De Sarlo F, Guideri L, Ponticelli F, Machetti F. Eur. J. Org. Chem. 2009; 5971
    • 9d Takikawa H, Hikita K, Suzuki K. Synlett 2007; 2252
    • 10a Di Nunno L, Scilimati A, Vitale P. Tetrahedron 2005; 61: 11270
    • 10b Di Nunno L, Scilimati A, Vitale P. Tetrahedron 2006; 62: 1610
    • 11a Baranski A. Pol. J. Chem. 1981; 55: 1189
    • 11b Qazi NA, Singh PP, Jan S, Kumar H, Sampath M. Synlett 2007; 1449
    • 11c Ambler PW, Paton RM, Tout JM. J. Chem. Soc., Chem. Commun. 1994; 2661
    • 11d Ambler PW, Paton RM, Tout JM. J. Chem. Soc., Chem. Commun. 1995; 911
    • 11e Ponticello IS. J. Polym. Sci. Polym. Chem. Ed. 1975; 13: 415
    • 12a Kano H, Adachi I. Japanese Patent 40023172, 1965 ; Chem. Abstr. 1966, 64, 84595.
    • 12b Bertini V, De Munno A, Pelosi P, Pino P. J. Heterocycl. Chem. 1968; 5: 621
    • 12c Batra S, Rastogi SK, Patra A, Bhaduri AP. Tetrahedron Lett. 2000; 41: 5971
    • 12d Sokolov SD, Azarevich OG, Vinogradova SM. Khim. Geterotsikl. Soedin. 1988; 5: 710 ; Chem. Abstr. 1989, 110, 231555
    • 12e Vagina LK, Chistokletov VN, Petrov AA. Zh. Obshch. Khim. 1966; 2: 417 ; Chem. Abstr. 1966, 65, 38487
    • 13a Jarrar AA, Hussein AQ, Madi AS. J. Heterocycl. Chem. 1990; 27: 275
    • 13b Kheruze YI, Galishev VA, Petrov AA. Zh. Org. Khim. 1988; 24: 944 ; Chem. Abstr. 1989, 110, 95065
    • 13c Annunziata R, Cinquini M, Cozzi F, Raimondi L, Restelli A. Helv. Chim. Acta 1985; 68: 1217
    • 13d Annunziata R, Cinquini M, Cozzi F, Raimondi L. J. Chem. Soc., Chem. Commun. 1985; 403
    • 13e Sumimoto S, Ueda N, Imoto M. Kogyo Kagaku Zasshi 1963; 66: 1505 ; Chem. Abstr. 1964, 61, 55130
    • 14a Brubaker JD, Myers AG. Org. Lett. 2007; 9: 3523
    • 14b Brandi A, De Sarlo F, Guarna A, Goti A. Heterocycles 1985; 23: 2019
    • 14c DalPiaz V, Ciciani G, Costanzo A, Auzzi G, Chimichi S. Heterocycles 1984; 22: 1741
    • 14d Novozhilov YV, Karabanov MV, Korsakov MK, Semenychev EV, Yasinskii OA. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2009; 52: 1 ; Chem. Abstr. 2010, 152, 591904
  • 15 Bertini V, Pocci M, Provenzano F, De Munno A. Macromolecules 1981; 14: 1833
  • 16 Perrone MG, Vitale P, Malerba P, Altomare A, Rizzi R, Lavecchia A, Di Giovanni C, Novellino E, Scilimati A. Chem. Med. Chem. 2012; 7: 629
  • 17 Di Nunno L, Scilimati A. Tetrahedron 1987; 43: 2181
    • 18a Hine J. Physical Organic Chemistry . McGraw-Hill Book Co. Inc; New York: 1962. Chap. 4
    • 18b Smith MB, March J. March’s Advanced Organic Chemistry. Reaction, Mechanism, and Structure . 6th ed. Wiley; Hoboken: 2007: Chap. 9, 404
    • 18c Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165

      For computational studies about nucleophilic additions of lithium enolates, see:
    • 19a Li Y, Paddon-Row MN, Houk KN. J. Org. Chem. 1990; 55: 481
    • 19b Pratt LM, Van Nguyen N, Ramachandran B. J. Org. Chem. 2005; 70: 4279
  • 20 Unpublished results.
  • 21 Suffert J. J. Org. Chem. 1989; 54: 509
  • 22 For references concerning the chemistry of aryl niltrile oxides: Torssell KB. G. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis . Feuer H. VCH; Weinheim: 1988. Chap. 2, 55-74
  • 23 Vitale P, Di Nunno L, Scilimati A. Synthesis 2010; 3195
  • 24 Granovsky A. A.; Firefly version 8.0; www http://classic.chem.msu.su/gran/firefly/index.html.
  • 25 Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis V, Montgomery V. J. Comput. Chem. 1993; 14: 1347