Synlett 2015; 26(07): 861-865
DOI: 10.1055/s-0034-1380000
synpacts
© Georg Thieme Verlag Stuttgart · New York

Lithium Chloride Carbenoids in Bond Activation Reactions

Sebastian Molitor
Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: vgessner@uni-wuerzburg.de
,
Viktoria H. Gessner*
Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany   Email: vgessner@uni-wuerzburg.de
› Author Affiliations
Further Information

Publication History

Received: 09 December 2014

Accepted after revision: 12 January 2015

Publication Date:
10 February 2015 (online)

Abstract

The field of transition-metal-free bond activation reactions has grown rapidly over the past years. In this context, lithium carbenoids have received renewed interest because of their unique electronic properties and their ambiphilic character. Stabilization of these usually highly reactive and thermally labile compounds has allowed the isolation of species that are stable at room temperature and enabled the development of new applications. In this article, we highlight the latest advances in the stabilization of Li/Cl carbenoids and their use in bond-activation chemistry.

1 Introduction

2 Classical Carbenoid Chemistry

3 Isolation and Properties of Li/Cl Carbenoids

4 Reactivity towards Boranes: B–X Bond Activation Reactions

5 Reactivity towards Phosphines

6 Conclusions

 
  • References and Notes

    • 1a Igau A, Grützmacher H, Baceiredo A, Bertrand G. J. Am. Chem. Soc. 1988; 110: 6463
    • 1b Arduengo AJ. III, Harlow LM, Kine M. J. Am. Chem. Soc. 1991; 113: 361
  • 2 Lavallo V, Canac Y, Donnadieu B, Schoeller WW, Bertrand G. Angew. Chem. Int. Ed. 2006; 45: 3488
  • 3 Back O, Kuchenbeiser G, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2009; 48: 5530
  • 4 Frey GD, Lavallo V, Donnadieu B, Schoeller WW, Bertrand G. Science 2007; 316: 439
    • 5a Jana A, Schulzke C, Roesky HW. J. Am. Chem. Soc. 2009; 131: 4600
    • 5b Jana A, Roesky HW, Schulzke C, Samuel PP. Organometallics 2009; 28: 6574
  • 6 Yao S, van Wüllen C, Sun X.-Y, Driess M. Angew. Chem. Int. Ed. 2008; 47: 3250
  • 7 Jana A, Samuel PP, Tavcar G, Roesky HW, Schulzke C. J. Am. Chem. Soc. 2010; 132: 10164
  • 8 Präsang C, Stoelzel M, Inoue S, Meltzer A, Driess M. Angew. Chem. Int. Ed. 2010; 49: 10002
    • 9a Stephan DW. Org. Biomol. Chem. 2008; 6: 1535
    • 9b Stephan DW, Erker G. Angew. Chem. Int. Ed. 2010; 49: 46
  • 10 Welch GC, San Juan RR, Masuda JD, Stephan DW. Science 2006; 314: 1124
  • 11 Power PP. Nature 2010; 463: 171
  • 12 Closs GL, Closs LE. Angew. Chem. 1962; 74: 431
  • 13 Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
  • 14 Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 15a Boche G, Lohrenz JC. W. Chem. Rev. 2001; 101: 697
    • 15b Braun M. Angew. Chem. Int. Ed. 1998; 37: 430
    • 15c Köbrich G. Angew. Chem., Int. Ed. Engl. 1972; 11: 473
    • 15d Köbrich G. Angew. Chem. Int. Ed. 1967; 6: 41
    • 15e Capriati V, Florio S. Chem. Eur. J. 2010; 16: 4152
    • 15f Capriati V In Contemporary Carbene Chemistry . Moss RA, Doyle MP. Wiley; New York: 2014
    • 15g Florio S, Capriati V, Luisi R. Curr. Org. Chem. 2004; 8: 1529
  • 16 Seyferth D, Welch DE, Raab G. J. Am. Chem. Soc. 1962; 84: 4266
  • 17 Kirmse W, Wedel BG. V. Justus Liebigs Ann. Chem. 1963; 666: 1
  • 18 Pasco M, Gilboa N, Mejuch T, Marek I. Organometallics 2013; 32: 942
    • 19a Fritsch P. Justus Liebigs Ann. Chem. 1894; 279: 319
    • 19b Buttenberg WP. Justus Liebigs Ann. Chem. 1894; 279: 324
    • 19c Wiechell H. Justus Liebigs Ann. Chem. 1894; 279: 337
  • 20 Boche G, Marsch M, Müller A, Harms K. Angew. Chem. 1993; 105: 1081
  • 21 Müller A, Marsch M, Harms K, Lohrenz JC. W, Boche G. Angew. Chem. 1996; 108: 1639
  • 22 Niecke E, Becker P, Nieger M, Stalke D, Schoeller WW. Angew. Chem. 1995; 107: 2012
  • 23 Cantat T, Jacques X, Ricard L, Le Goff XF, Mézailles N, Le Floch P. Angew. Chem. Int. Ed. 2007; 46: 5947
  • 24 Feichtner K.-S, Gessner VH. Dalton Trans. 2014; 14399
    • 25a Becker J, Gessner VH. Dalton Trans. 2014; 4320
    • 25b Kupper C, Molitor S, Gessner VH. Organometallics 2014; 33: 347
    • 26a Gessner VH. Organometallics 2011; 30: 4228
    • 26b Molitor S, Feichtner K.-S, Kupper C, Gessner VH. Chem. Eur. J. 2014; 20: 10752

      For examples for other long-lived Li/Hal carbenoids, see:
    • 27a Barluenga J, Rodríguez MA, Campos PJ. J. Am. Chem. Soc. 1988; 110: 5567
    • 27b Barluenga J, González JM, Llorente I, Campos PJ, Rodríguez MA, Thiel W. J. Organomet. Chem. 1997; 548: 185
    • 27c Maercker A, Bös B. Main Group Met. Chem. 1991; 14: 67
  • 28 Seebach D, Hässig R, Gabriel J. Helv. Chim. Acta 1983; 66: 308
  • 29 Köbrich G, Merkle HR. Angew. Chem. Int. Ed. 1967; 6: 74
    • 30a Matteson DS, Majumdar D. J. Am. Chem. Soc. 1980; 102: 7588
    • 30b Fujioka Y, Amii H. Org. Lett. 2008; 10: 769
    • 31a Hata T, Kitagawa H, Masai H, Kurahashi T, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2001; 40: 790
    • 31b Kurahashi T, Hata T, Masai H, Kitagawa H, Shimizu M, Hiyama T. Tetrahedron 2002; 58: 6381
    • 31c Shimizu M, Nakamaki C, Shimono K, Schelper M, Kurahashi T, Hiyama T. J. Am. Chem. Soc. 2005; 127: 12506
    • 31d Shimizu M, Schelper M, Nagoa I, Shimono K, Kurahashi T, Hiyama T. Chem. Lett. 2006; 35: 1222

      For other examples of carbenoids in boron chemistry, see:
    • 32a Blakemore PR, Burge MS. J. Am. Chem. Soc. 2007; 129: 3068
    • 32b Blakemore PR, Marsden SP, Vater HD. Org. Lett. 2006; 8: 773
    • 32c Emerson CR, Zakharov LN, Blakemore PR. Org. Lett. 2011; 13: 1318
  • 33 Frey GD, Masuda JD, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 9444
  • 34 Dureen MA, Lough A, Gilbert TM, Stephan DW. Chem. Commun. 2008; 36: 4303
  • 35 Inés B, Patil M, Carreras J, Goddard R, Thiel W, Alcarazo M. Angew. Chem. Int. Ed. 2011; 50: 1
  • 36 Heuclin H, Ho SY.-F, Le Goff XF, So C.-W, Mézailles N. J. Am. Chem. Soc. 2013; 135: 8774
  • 37 Molitor S, Gessner VH. Chem. Eur. J. 2013; 19: 11858
  • 38 Molitor S, Becker J, Gessner VH. J. Am. Chem. Soc. 2014; 136: 15517