Synlett 2015; 26(04): 508-513
DOI: 10.1055/s-0034-1380097
letter
© Georg Thieme Verlag Stuttgart · New York

Kinetic Isotope Effects (KIE) and Density Functional Theory (DFT): A Match Made in Heaven?

Niels Johan Christensen
Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, 2800, Kgs. Lyngby, Denmark   Email: pf@kemi.dtu.dk
,
Peter Fristrup*
Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, 2800, Kgs. Lyngby, Denmark   Email: pf@kemi.dtu.dk
› Author Affiliations
Further Information

Publication History

Received: 05 December 2014

Accepted after revision: 26 January 2015

Publication Date:
05 February 2015 (online)


Abstract

Determination of experimental kinetic isotope effects (KIE) is one of the most useful tools for the exploration of reaction mechanisms in organometallic chemistry. The approach has been further strengthened during the last decade with advances in modern computational chemistry. This allows for the calculation of a theoretical KIE that can often be compared directly to the experimental value. This combined experimental/theoretical approach can be particularly useful in cases where the value of the experimental KIE is not directly associated with one particular reaction step (e.g., in a catalytic reaction). The approach is highlighted by using recent examples from both stoichiometric and catalytic reactions, homogeneous and heterogeneous catalysis, and enzyme catalysis to illustrate the expected accuracy and utility of this approach.

 
  • References and Notes

  • 1 Bigeleisen J, Mayer MG. J. Chem. Phys. 1947; 15: 261
  • 2 Westheimer FH. Chem. Rev. 1961; 61: 265
    • 3a Bigeleisen J, Wolfsberg M In Advances in Chemical Physics . Vol. 1. Prigogine I. John Wiley & Sons, Inc.,; 2007: 15
    • 3b Cleland WW. Arch. Biochem. Biophys. 2005; 433: 2
    • 3c Northrop DB. Annu. Rev. Biochem. 1981; 50: 103
  • 4 Gómez-Gallego M, Sierra MA. Chem. Rev. 2011; 111: 4857
  • 5 Houk KN, Cheong PH.-Y. Nature 2008; 455: 309
    • 6a Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 6b Becke AD. J. Chem. Phys. 1993; 98: 1372
    • 6c Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter Mater. Phys. 1988; 37: 785
  • 7 Dam JH, Fristrup P, Madsen R. J. Org. Chem. 2008; 73: 3228
    • 8a Grimme S. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011; 1: 211
    • 8b Goerigk L, Grimme S. Phys. Chem. Chem. Phys. 2011; 13: 6670
    • 9a Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E. J. Chem. Phys. 2001; 114: 5149
    • 9b Grimme S. J. Comput. Chem. 2004; 25: 1463
  • 10 Zhao Y, Schultz NE, Truhlar DG. J. Chem. Theory Comput. 2006; 2: 364
    • 11a Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
    • 11b Zhao Y, Truhlar DG. Acc. Chem. Res. 2008; 41: 157
  • 12 Bantreil X, Prestat G, Moreno A, Madec D, Fristrup P, Norrby P.-O, Pregosin PS, Poli G. Chem. Eur. J. 2011; 17: 2885
  • 13 Świderek K, Dybala-Defratyka A, Rohr DR. J. Mol. Model. 2011; 17: 2175
  • 14 Simmons EM, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
  • 15 Engelin CJ, Jensen T, Rodriguez-Rodriguez S, Fristrup P. ACS Catal. 2013; 3: 294
  • 16 Makarov IS, Fristrup P, Madsen R. Chem. Eur. J. 2012; 18: 15683
    • 17a Wadt WR, Hay PJ. J. Chem. Phys. 1985; 82: 270
    • 17b Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 284
    • 17c Hay PJ, Wadt WR. J. Chem. Phys. 1985; 82: 299
  • 18 De Visser SP In Quantum Tunnelling in Enzyme-Catalysed Reactions . Vol. 17. Allemann RK, Scrutton NS. RSC; Cambridge: 2009: 18
  • 19 Wong K.-Y, Richard JP, Gao J. J. Am. Chem. Soc. 2009; 131: 13963
  • 20 Wigner E. Phys. Rev. 1932; 40: 749
  • 21 Keck JC. J. Chem. Phys. 1960; 32: 1035
  • 22 Baldridge KM, Gordon MS, Steckler R, Truhlar DG. J. Phys. Chem. 1989; 93: 5107
  • 23 Garrett BC, Truhlar DG, Grev RS, Magnuson AW. J. Phys. Chem. 1980; 84: 1730; Erratum: 1983, 87, 4554
  • 24 Isaacson AD, Truhlar DG. J. Chem. Phys. 1982; 76: 1380
  • 25 Truhlar DG, Isaacson AD, Garrett BC In Theory of Chemical Reaction Dynamics . Vol. 4. Baer M. CRC Press; Boca Raton: 1985: 65
  • 26 Truhlar DG, Garrett BC. Annu. Rev. Phys. Chem. 1984; 35: 159
  • 27 Lu D.-h, Truong TN, Melissas V, Lynch GC, Liu Y.-P, Garrett BC, Steckler R, Isaacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG. Comput. Phys. Commun. 1992; 71: 235
  • 28 Tsai W.-C, Hu W.-P. Molecules 2013; 18: 4816
  • 29 Singleton DA, Thomas AA. J. Am. Chem. Soc. 1995; 117: 9357
  • 30 Chan J, Lewis AR, Gilbert M, Karwaski M.-F, Bennet AJ. Nat. Chem. Biol. 2010; 6: 405
  • 31 Lupp D, Christensen NJ, Fristrup P. Dalton Trans. 2014; 11093
  • 32 Qi Y, Yang J, Duan X, Zhu Y.-A, Chen D, Holmen A. Catal. Sci. Technol. 2014; 4: 3534
  • 33 Huang M, Garrett GE, Birlirakis N, Bohé L, Pratt DA, Crich D. Nat. Chem 2012; 4: 663
  • 34 Berti PJ, Tanaka KS. Adv. Phys. Org. Chem. 2002; 37: 239
  • 35 Chan J, Sannikova N, Tang A, Bennet AJ. J. Am. Chem. Soc. 2014; 136: 12225
  • 36 Sen A, Kohen A In Quantum Tunnelling in Enzyme-Catalysed Reactions . Allemann RK, Scrutton NS. RSC; Cambridge: 2009: 161
  • 37 Devi-Kesavan LS, Gao J. J. Am. Chem. Soc. 2003; 125: 1532
  • 38 Alhambra C, Corchado J, Sánchez ML, Garcia-Viloca M, Gao J, Truhlar DG. J. Phys. Chem. B 2001; 105: 11326
  • 39 Truhlar DG, Gao J, Alhambra C, Garcia-Viloca M, Corchado J, Sánchez ML, Villà J. Acc. Chem. Res. 2002; 35: 341
  • 40 Gao J, Truhlar DG. Annu. Rev. Phys. Chem. 2002; 53: 467
  • 41 Martí S, Moliner V, Tuñón I, Williams IH. J. Phys. Chem. B 2005; 109: 3707
  • 42 Marti S, Moliner V, Tunon I, Williams IH. Org. Biomol. Chem. 2003; 1: 483
  • 43 Kellerman DL, York DM, Piccirilli JA, Harris ME. Curr. Opin. Chem. Biol. 2014; 21: 96
  • 44 Gu H, Zhang S, Wong K.-Y, Radak BK, Dissanayake T, Kellerman DL, Dai Q, Miyagi M, Anderson VE, York DM, Piccirilli JA, Harris ME. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 13002
  • 45 Mayaan E, Moser A, MacKerell AD, York DM. J. Comput. Chem. 2007; 28: 495