Synlett 2015; 26(07): 915-920
DOI: 10.1055/s-0034-1380125
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Approach for C(sp3)–H Bond Thioetherification of Isochroman

Jie Feng
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Guoping Lu
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Meifang Lv
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Chun Cai*
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 22 November 2014

Accepted after revision: 05 January 2015

Publication Date:
10 February 2015 (online)


Abstract

An unprecedented C–S formation protocol via the direct oxidative C(sp3)–H bond thioesterification of isochroman under metal-free conditions was developed. A series of isochroman derivatives could be afforded efficiently by the green, simple, and atom-economical method.

 
  • References and Notes


    • For selected reviews or books on transition-metal-catalyzed C–H functionalization, see:
    • 1a Yu J.-Q, Shi Z.-J. C-H Activation . Springer; Berlin: 2010
    • 1b Sun CL, Li BJ, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 1c Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 1d Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886

      For selected reviews on C(sp)–H or C(sp2)–H bond functionalization via CDC protocols, see:
    • 2a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 2b Shi W, Liu C, Lei A.-W. Chem. Soc. Rev. 2011; 40: 2761
    • 2c Engle KM, Mei TS, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2d Wu YN, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26

      For selected reviews on C(sp3)–H bond functionalization involving CDC protocols, see:
    • 3a McMurray L, Hara FO, Gaunt M. Chem. Soc. Rev. 2011; 40: 1885
    • 3b Uyanik M, Ishihara K. ChemCatChem 2012; 4: 177
    • 3c Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 3d Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 3e Guo X.-W, Li Z.-P, Li C.-J. Prog. Chem. 2010; 22: 1434

      For selected references, see:
    • 4a Guo XY, Li C.-J. Org. Lett. 2011; 13: 4977
    • 4b Antonchick AP, Burgmann L. Angew. Chem. Int. Ed. 2013; 52: 3267
    • 4c Hoshikawa T, Inoue M. Chem. Sci. 2013; 4: 3118
    • 4d Li ZJ, Zhang Y, Zhang LZ, Liu ZQ. Org. Lett. 2014; 16: 382
    • 4e Zhu YF, Wei YY. Chem. Sci. 2014; 5: 2379
    • 4f Michaudel Q, Thevenet D, Baran PS. J. Am. Chem. Soc. 2012; 134: 2547
    • 4g Tran BL, Li BJ, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 2555
    • 4h Du B.-G, Jin B, Sun P.-P. Org. Lett. 2014; 16: 3032
    • 4i Li Z, Cao L, Li C.-J. Angew. Chem. Int. Ed. 2007; 46: 6505
    • 4j Wan M, Meng Z, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 13845
    • 4k Chen W, Xie Z, Zheng H, Lou H, Liu L. Org. Lett. 2014; 16: 5988

      For selected references, see:
    • 5a Lou S.-J, Xu D.-Q, Shen D.-F, Wang Y.-F, Liu Y.-K, Xu Z.-Y. Chem. Commun. 2012; 48: 11993
    • 5b Nakao Y, Morita E, Idei H, Hiyama T. J. Am. Chem. Soc. 2011; 133: 3264
    • 5c Neufeldtand SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 5d Majji G, Guin S, Gogoi A, Rout SK, Patel BK. Chem.Commun. 2013; 49: 3031
    • 5e Wu Y, Choy PY, Mao F, Kwong FY. Chem. Commun. 2013; 49: 689
    • 5f Priebbenow DL, Bolm C. Org. Lett. 2014; 16: 1650

      For selected examples, see:
    • 6a Conejero S, Paneque M, Poveda ML, Santos LL, Carmona E. Acc. Chem. Res. 2010; 43: 572
    • 6b Cheng K, Huang LH, Zhang YH. Org. Lett. 2009; 11: 2908
    • 6c Liu X, Sun B, Xie Z, Qin X, Liu L, Lou HX. J. Org. Chem. 2013; 78: 3104
    • 6d Pan S, Liu J, Li H, Wang Z, Guo X, Li Z. Org. Lett. 2010; 12: 1932
    • 6e Xie Z, Cai Y, Hu H, Lin C, Jiang J, Chen Z, Wang L, Pan Y. Org. Lett. 2013; 15: 4600
    • 6f Liu D, Liu C, Li H, Lei A.-W. Angew. Chem. Int. Ed. 2013; 52: 4453
    • 7a Martin P, Consroe P. Science 1976; 194: 965
    • 7b de Groot MJ, Alex AA, Jones BC. J. Med. Chem. 2002; 45: 1983
    • 7c Yamaori S, Kushihara M, Yamamoto I, Watanabe K. Biochem. Pharmacol. 2010; 79: 1691

      For selected references, see:
    • 8a Lehmann F, Pettersen A, Currier EA, Sherbukhin V, Olsson R, Hacksell U, Luthman K. J. Med. Chem. 2006; 49: 2232
    • 8b Maier CA, Wünsch B. J. Med. Chem. 2002; 45: 438

      For selected C–C bond formations at the C(1) position of isochroman examples, see:
    • 9a Li Z, Yu R, Li H. Angew. Chem. Int. Ed. 2008; 47: 7497
    • 9b Song C.-X, Cai G.-X, Farrell TR, Jiang Z.-P, Li H, Gan L.-B, Shi Z.-J. Chem. Commun. 2009; 6002
    • 9c Richter H, Rohlmann R, Mancheño OG. Chem. Eur. J. 2011; 17: 11622
    • 9d Pinter A, Klussmann M. Adv. Synth. Catal. 2012; 354: 701
    • 9e Liu X, Sun B, Xie Z, Qin X, Liu L, Lou H. J. Org. Chem. 2013; 78: 3104
    • 9f Meng Z, Sun S, Yuan H, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 543
    • 9g Park SJ, Price JR, Todd MH. J. Org. Chem. 2012; 77: 949
    • 9h Muramatsu W, Nakano K, Li C.-J. Org. Lett. 2013; 15: 3650
    • 9i Qvortrup K, Rankic DA, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626

      For selected references, see:
    • 11a Marcincal-Lefebvre A, Gesquiere JC, Lemer C. J. Med. Chem. 1981; 24: 889
    • 11b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 11c Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 11d Magens S, Plietker B. Chem. Eur. J. 2011; 17: 8807
    • 11e Limura S, Manabe K, Kobayashi S. Chem. Commun. 2002; 94
  • 12 Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
  • 13 Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 14 Guo S.-R, Yuan Y.-Q, Xiang J.-N. Org. Lett. 2013; 15: 4654
  • 15 Borovička M, Kvis F, Chromík J, Protiva M. Collect. Czech. Chem. Commun. 1967; 32: 1738
  • 16 General Procedure for the Oxidative C–S Formation A sealed tube was charged with isochroman (or benzylic ether; 1 mmol), DTBP (1.5 mmol), thiol (or thiophenol; 1.5 mmol). The reaction mixture was stirred at 120 °C for 6 h. The reaction mixture was then cooled to obtain a brown liquid. The organic solutions could be purified directly by column chromatography on silica gel to give the pure product (hexane–EtOAc, 20:1). 1-[(4-Chlorophenyl)thio]isochromane 3a Colorless oil; yield: 212 mg (77%). 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 8.3 Hz, 2 H), 7.40–7.30 (m, 3 H), 7.28–7.21 (m, 2 H), 7.20–7.11 (m, 1 H), 6.49 (s, 1 H), 4.55 (td, J = 11.5, 3.3 Hz, 1 H), 4.03 (dd, J = 11.3, 6.2 Hz, 1 H), 3.20–3.09 (m, 1 H), 2.72 (dd, J = 16.5, 2.4 Hz, 1 H). 13C NMR (126 MHz, CDCl3): δ = 133.56, 132.90, 132.48, 132.27, 131.64, 128.06, 127.89, 126.93, 126.13, 125.16, 85.06, 76.39, 76.14, 75.89, 57.36, 26.75. Anal. Calcd for C15H13ClOS: C, 65.09; H, 4.73. Found: C, 64.88; H, 4.64. ESI-MS: m/z = 276.