Synlett 2015; 26(08): 1045-1048
DOI: 10.1055/s-0034-1380164
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Sulfur-Rich Crown Ethers via Azide–Alkyne Macrocyclization of α,ω-Diazido- and α,ω-Dipropargyl Sulfide Derivatives

Monika Stefaniak
Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland   eMail: romanski@uni.lodz.pl
,
Marcin Jasiński
Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland   eMail: romanski@uni.lodz.pl
,
Jarosław Romański*
Department of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland   eMail: romanski@uni.lodz.pl
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 09. Dezember 2014

Accepted after revision: 22. Januar 2015

Publikationsdatum:
27. Februar 2015 (online)


Abstract

A series of diazides and dithiols were prepared in a one-pot protocol from commercially available alcohols by a modified Appel reaction. Selected dithiols were converted into α,ω-dipropargyl sulfides and combined with thioglycol-derived diazides under Huisgen–Sharpless–Meldal reaction conditions to give a new class of 1,2,3-triazole-linked sulfur-rich crown ethers.

Supporting Information

 
  • References and Notes

    • 1a Huisgen R. Proc. Chem. Soc. 1961; 357
    • 1b Tornoe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 1c Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596 ; Angew. Chem. 2002, 114, 2708
    • 2a Kolb HC, Sharpless KB. Drug Discov. Today 2003; 8: 1128
    • 2b Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 3a Nwe K, Brechbiel MW. Cancer Biother. Radiopharm. 2009; 24: 289
    • 3b Presolski SI, Hong VP, Finn MG. Curr. Protoc. Chem. Biol. 2011; 3: 153
  • 4 Assali M, Cid J.-J, Fernandez I, Khiar N. Chem. Mater. 2013; 25: 4250
  • 5 Golas PL, Matyjaszewski K. Chem. Soc. Rev. 2010; 39: 1338
  • 6 Click Chemistry for Biotechnology and Material Science. Lahann J. John Wiley and Sons; Chichester: 2009
    • 7a Latyshev GV, Baranov MS, Kazantsev AV, Averin AD, Lukashev NV, Beletskaya IP. Synthesis 2009; 2605
    • 7b Binauld S, Hawker CJ, Fleury E, Drockenmuller E. Angew. Chem. Int. Ed. 2009; 48: 6654 ; Angew. Chem. 2009, 121, 6782
    • 7c Pasini D. Molecules 2013; 18: 9512
  • 8 Stefaniak M, Jasiński M, Romański J. Synthesis 2013; 45: 2245
  • 9 Meadow RJ, Reid EE. J. Chem. Soc. 1934; 56: 2177
  • 10 Stefaniak M, Jasiński M, Urbaniak K, Romański J, Seliger P, Gutowska N. Chemik 2014; 68: 592
    • 11a Bonger KM, van der Berg RJ. B. H. N, Heitman LH, IJzerman AP, Oosterom J, Timmers CM, Overkleeft HS, van der Marel GA. Bioorg. Med. Chem. 2007; 15: 4841
    • 11b Gao Y, Chen L, Zhang Z, Gu W, Li Y. Biomacromolecules 2010; 11: 3102
  • 12 Murakami T, Furusawa K. Synthesis 2002; 479
  • 13 General Procedure for the Synthesis of Diazides and Dithiols To a mixture of alcohol (1.0 mmol) and Ph3P (1.5 equiv*) in anhydrous DMF (5.0 mL) was added portionwise during 15 min NBS (1.5 equiv*) at 0 °C under inert atmosphere. The resulting mixture was stirred at r.t. for 30 min, followed by addition of solid KI (0.1 equiv*) and NaN3 or thiourea (2.0 equiv*). The resulting solution was heated for 24 h at 90 °C or 75 °C, respectively. In the case of thiol synthesis, crude isothiouronium salt was treated with 3% NaOH (aq), and the mixture was acidified using 3% HClaq to ca. pH 7. The mixture was diluted with EtOAc (25 mL), excess of 3% NaS2O3 (aq) solution was added (ca. 10 mL), and the layers were separated. The organic layer was washed with H2O, then with brine, and dried over MgSO4. The solvents were removed in vacuo to give crude products that were purified chromatographically; (*per OH group). 3-Thiapentane-1,5-diazide (2a) Colorless liquid, 129 mg (75%). 1H NMR (600 MHz, CDCl3): δ = 2.79 (t, 4 H, J = 7.2 Hz), 3.51 (t, 4 H, J = 7.2 Hz) ppm. 13C NMR (600 MHz, CDCl3): δ = 31.8; 51.3 ppm. IR (film): ν = 2926 (m), 2101 (s, N3), 1451 (m), 1349 (m), 1258 (m) cm–1. Anal. Calcd for C4H8N6S: C, 27.91; H, 4.65; N, 48.84. Found: C, 28.03; H, 4.81; N, 48.57.

    • Diagnostic signals in 1H NMR spectra located at δ = 2.81–2.84, 2.93–2.98, and 3.76–3.78 ppm could be attributed to the methylene groups neighboring sulfur atom of the intermediates A according to the literature data:
    • 14a Henkel JG, Amato GS. J. Med. Chem. 1988; 31: 1279
    • 14b Olah GA, Szilagyi PJ. J. Org. Chem. 1971; 36: 1121
    • 15a Morris DJ, Partridge AS, Mariville CV, Woodward G. Tetrahedron Lett. 2010; 51: 209
    • 15b Yang R, Kwek SM, Liu C. Tetrahedron Lett. 2013; 54: 3777
    • 16a Yoon DW, Gross DE, Lynch VM, Sessler JL, Hay BP, Lee CH. Angew. Chem. Int. Ed. 2008; 47: 5038
    • 16b Rhaman MM, Ahmed L, Wang J, Powell DR, Leszczynski J, Hossain MA. Org. Biomol. Chem. 2014; 12: 2045
  • 17 Georghiou G, Kleiner RE, Pulkoski-Gross M, Liu DR, Seeliger MA. Nat. Chem. Biol. 2012; 8: 366
  • 18 Blank I, Sen A, Grosch W. Z. Lebensm.-Unters. Forsch. 1992; 195: 239
  • 19 Hill AF, Neiss B, Schultz M, White AJ. P, Williams DJ. Organometallics 2010; 29: 6488
  • 20 General Macrocyclization Procedure To a vigorously stirred mixture of solid CuI (12 mg) and diisopropylethylamine (DIPEA, 0.4 mL) in anhydrous MeCN (100 mL) an equimolar mixture (in the range of 0.4–0.6 mmol) of diazide 2 and α,ω-dipropargyl derivative 13 in MeCN (100 mL) was added dropwise within 6 h at 40 °C, under argon atmosphere. The stirring was continued at 40 °C overnight. The mixture was extracted with CH2Cl2 (2 × 40 mL), the combined organic layers were dried over MgSO4 and filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography using neutral Al2O3 and 1% MeOH in CH2Cl2 as an eluent. Data for Compound 14a Compound 14a was obtained from diazide 2a (0.58 mmol) and dipropargyl derivative 13a (0.58 mmol); yield 86 mg (47%); pale-yellow solid. 1H NMR (600 MHz, CDCl3): δ = 2.73 (t, J = 6.2 Hz, 4 H), 2.98 (t, J = 6.7 Hz, 4 H), 3.65 (t, J = 6.2 Hz, 4 H), 3.93 (s, 4 H), 4.51 (t, J = 6.7 Hz, 4 H), 7.70 (s, 2 H) ppm. 13C NMR (600 MHz, CDCl3): δ = 26.7, 31.4, 32.2, 50.1, 70.8, 123.0, 145.8 ppm. IR (KBr): ν = 2961, 2921, 2855, 1459, 1361, 1262, 1102, 1051 cm–1. ESI-HRMS: m/z [M + Na]+ calcd for C14H22N6S3ONa: 409.0915; found: 409.0910.
    • 21a Liao W, Chen Y, Liu Y, Duan H, Petersen JL, Shi X. Chem. Commun. 2009; 6436
    • 21b Schweinfurth D, Pattacini R, Strobel S, Sarkar B. Dalton Trans. 2009; 9291
    • 21c Li Y, Flood AH. Angew. Chem. Int. Ed. 2008; 47: 2649
    • 21d Suijkerbuijk BM. J. M, Aerts BN. H, Dijkstra HP, Lutz M, Spek AL, van Koten G, Klein Gebbink RJ. M. Dalton Trans. 2007; 1273
  • 22 Slaitas A, Yeheskiely E. Eur. J. Org. Chem. 2002; 67: 2391 ; see also ref. 9, 10, and 14
    • 23a Wolf R, Hartman J, Storey J. J. Am. Chem. Soc. 1987; 109: 4328
    • 23b Tanaka M, Nakamura M, Ikeda T, Ikeda K, Ando H, Shibutani Y, Yajima S, Kimura K. J. Org. Chem. 2001; 66: 7008