Synlett 2015; 26(11): 1528-1532
DOI: 10.1055/s-0034-1380290
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Tertiary α-Hydroxy Phosphonic Acid Derivatives under Aerobic Oxidation Conditions

Biplab Maji*
Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan   Email: biplabmaji@isc.chubu.ac.jp   Email: hyamamoto@isc.chubu.ac.jp
,
Hisashi Yamamoto*
Molecular Catalyst Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan   Email: biplabmaji@isc.chubu.ac.jp   Email: hyamamoto@isc.chubu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 20 January 2015

Accepted after revision: 11 February 2015

Publication Date:
05 March 2015 (online)


This manuscript is dedicated to Peter Vollhardt, who launched SYNLETT 25 years ago and since then has continuously served in a number of important editorial capacities.

Abstract

The copper-catalyzed asymmetric α-hydroxylation of β-ketophosphonates, using in situ generated nitrosocarbonyl compounds as electrophilic source of oxygen, is reported. The reaction merges aerobic oxidation and Lewis acid catalysis. α-Aminoxy-β-ketophosphonates were synthesized in high yields (up to 97% yield) and high enantioselectivities (up to >99% ee).

Supporting Information

 
  • References and Notes

    • 1a Horiguchi M. Biochemistry of Natural C–P Compounds. Hori T, Horiguchi M, Hayashi A. Japanese Association for Research on the Biochemistry of C–P Compounds; Shiga: 1984: 24
    • 1b Korn ED, Dearborn DG, Fales HM, Sokoloski EA. J. Biol. Chem. 1973; 248: 2257
    • 1c Ogita T, Gunji S, Fukazawa Y, Terahara A, Kinoshita T, Nagaki H, Beppu T. Tetrahedron Lett. 1983; 24: 2283
    • 1d Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks E, Kaneshiro E. Lipids 2001; 36: 513
    • 1e Metcalf WW, van de Donk WA. Annu. Rev. Biochem. 2009; 78: 65
    • 1f Fields SC. Tetrahedron 1999; 55: 12237
    • 2a Engel R. Chem. Rev. 1977; 77: 349
    • 2b Azema L, Baron R, Ladame S. Curr. Enzym. Inhib. 2006; 2: 61
  • 3 Szymańska A, Szymczak M, Boryski J, Stawiński J, Kraszewski A, Collu G, Sanna G, Giliberti G, Loddo R, Colla PL. Biorg. Med. Chem. 2006; 14: 1924
    • 4a Dellaria JF, Maki RG, Stein HH, Cohen J, Whittern D, Marsh K, Hoffman DJ, Plattner JJ, Perun TJ. J. Med. Chem. 1990; 33: 534
    • 4b Tao M, Bihovsky R, Wells GJ, Mallamo JP. J. Med. Chem. 1998; 41: 3912
  • 5 Stowasser B, Budt K.-H, Jian-Qi L, Peyman A, Ruppert D. Tetrahedron Lett. 1992; 33: 6625
  • 6 Moore M, Dreyer G. Perspect. Drug Discovery Des. 1993; 1: 85
    • 7a McKenna CE, Kashemirov BA, Błażewska KM, Mallard-Favier I, Stewart CA, Rojas J, Lundy MW, Ebetino FH, Baron RA, Dunford JE, Kirsten ML, Seabra MC, Bala JL, Marma MS, Rogers MJ, Coxon FP. J. Med. Chem. 2010; 53: 3454
    • 7b Błażewska KM, Ni F, Haiges R, Kashemirov BA, Coxon FP, Stewart CA, Baron R, Rogers MJ, Seabra MC, Ebetino FH, McKenna CE. E. J. Med. Chem. 2011; 46: 4820
  • 8 Sobhani S, Tashrifi Z. Tetrahedron 2010; 66: 1429
    • 9a Kafarski P, Lejczak B. J. Mol. Catal. B: Enzym. 2004; 29: 99
    • 9b Maly A, Lejczak B, Kafarski P. Tetrahedron: Asymmetry 2003; 14: 1019
    • 9c Wuggenig F, Hammerschmidt F. Monatsh. Chem. 1998; 129: 423
    • 9d Oleg IK. Russ. Chem. Rev. 2011; 80: 883
    • 10a Wiemer DF. Tetrahedron 1997; 53: 16609
    • 10b Arai T, Bougauchi M, Sasai H, Shibasaki M. J. Org. Chem. 1996; 61: 2926
    • 10c Failla S, Finocchiaro P, Consiglio GA. Heteroat. Chem. 2000; 11: 493
    • 10d Gröger H, Hammer B. Chem. Eur. J. 2000; 6: 943
    • 10e Zhou X, Liu X, Yang X, Shang D, Xin J, Feng X. Angew. Chem. Int. Ed. 2008; 47: 392
    • 10f Abell JP, Yamamoto H. J. Am. Chem. Soc. 2008; 130: 10521
    • 10g Goulioukina NS, Bondarenko GN, Bogdanov AV, Gavrilov KN, Beletskaya IP. Eur. J. Org. Chem. 2009; 510
    • 10h Uraguchi D, Ito T, Ooi T. J. Am. Chem. Soc. 2009; 131: 3836
    • 10i Albrecht Ł, Albrecht A, Krawczyk H, Jørgensen KA. Chem. Eur. J. 2010; 16: 28
    • 10j Suyama K, Sakai Y, Matsumoto K, Saito B, Katsuki T. Angew. Chem. Int. Ed. 2010; 49: 797
    • 11a Samanta S, Zhao C.-G. J. Am. Chem. Soc. 2006; 128: 7442
    • 11b Huang J, Wang J, Chen X, Wen Y, Liu X, Feng X. Adv. Synth. Catal. 2008; 350: 287
    • 11c Chen X, Wang J, Zhu Y, Shang D, Gao B, Liu X, Feng X, Su Z, Hu C. Chem. Eur. J. 2008; 14: 10896
    • 11d Gondi VB, Hagihara K, Rawal VH. Angew. Chem. Int. Ed. 2009; 48: 776
    • 11e Kong S, Fan W, Wu G, Miao Z. Angew. Chem. Int. Ed. 2012; 51: 8864
    • 11f Wang C, Xu C, Tan X, Peng H, He H. Org. Biomol. Chem. 2012; 10: 1680
    • 11g Hatano M, Horibe T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 4549
    • 11h Frings M, Thomé I, Schiffers I, Pan F, Bolm C. Chem. Eur. J. 2014; 20: 1691
    • 12a Wang F, Liu X, Cui X, Xiong Y, Zhou X, Feng X. Chem. Eur. J. 2009; 15: 589
    • 12b Uraguchi D, Ito T, Nakamura S, Ooi T. Chem. Sci. 2010; 1: 488
  • 13 Maji B, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 14472
    • 14a Bernardi L, Zhuang W, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 5772
    • 14b Kim SM, Kim HR, Kim DY. Org. Lett. 2005; 7: 2309
    • 14c Lin A, Fang L, Zhu X, Zhu C, Cheng Y. Adv. Synth. Catal. 2011; 353: 545
    • 14d Shibata M, Ikeda M, Motoyama K, Miyake Y, Nishibayashi Y. Chem. Commun. 2012; 48: 9528
    • 15a Kirby GW, Sweeny JG. J. Chem. Soc., Chem. Commun. 1973; 704
    • 15b Kirby GW. Chem. Soc. Rev. 1977; 6: 1
    • 15c Kibayashi C, Aoyagi S. Synlett 1995; 873
    • 15d Vogt PF, Miller MJ. Tetrahedron 1998; 54: 1317
    • 15e Yamamoto Y, Yamamoto H. Eur. J. Org. Chem. 2006; 2031
    • 15f Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
    • 15g Adam W, Krebs O. Chem. Rev. 2003; 103: 4131
    • 15h Iwasa S, Fakhruddin A, Nishiyama H. Mini-Rev. Org. Chem. 2005; 2: 157
    • 15i Baidya M, Yamamoto H. Synthesis 2013; 45: 1931
    • 15j Baidya M, Griffin KA, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 18566
    • 15k Maji B, Baidya M, Yamamoto H. Chem. Sci. 2014; 5: 3941
    • 15l Maji B, Yamamoto H. Angew. Chem. Int. Ed. 2014; 53: 8714
    • 15m Sandoval D, Frazier CP, Bugarin A, Read de Alaniz J. J. Am. Chem. Soc. 2012; 134: 18948
    • 15n Frazier CP, Sandoval D, Palmer LI, Read de Alaniz J. Chem. Sci. 2013; 4: 3857
    • 15o Frazier CP, Engelking JR, Read de Alaniz J. J. Am. Chem. Soc. 2011; 133: 10430
    • 15p Frazier CP, Bugarin A, Engelking JR, Read de Alaniz J. Org. Lett. 2012; 14: 3620
    • 15q Kano T, Shirozu F, Maruoka K. J. Am. Chem. Soc. 2013; 135: 18036
    • 15r Kano T, Shirozu F, Maruoka K. Org. Lett. 2014; 16: 1530
    • 15s Xu C, Zhang L, Luo S. Angew. Chem. Int. Ed. 2014; 53: 4149
    • 15t Palmer LI, Frazier CP, Read de Alaniz J. Synthesis 2014; 46: 269
    • 15u Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
    • 16a Johnson JS, Evans DA. Acc. Chem. Res. 2000; 33: 325
    • 16b Hargaden GC, Guiry PJ. Chem. Rev. 2009; 109: 2505
    • 16c Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2011; 111: PR284
  • 17 Brill E. Experientia 1974; 30: 835
  • 18 General Procedure for Cu(OTf)2-PhBox-Catalyzed O-Nitroso Aldol Reaction of β-Ketophosphonate Using CuCl/Air as Oxidant To a DCE solution (1 mL) of Cu(OTf)2–PhBox complex [prepared by mixing 0.01 mmol of Cu(OTf)2 and 0.012 mmol of PhBox ligand at r.t.] was added a DCE (1 mL) solution of the β-ketophosphonate (1, 0.1 mmol). Followed by solid N-protected hydroxamic acid (2, 0.12 mmol) and CuCl (1.0 mg, 0.01 mmol) were added. The reaction was placed under air using an air balloon and was allowed to stir at r.t. (25 °C). After completion (monitored by TLC) it was directly loaded into a column packed with silica gel and purified using EtOAc–n-hexane (1:1 to 3:1) as eluent to afford the O-nitroso aldol products 3.