Synlett 2015; 26(20): 2731-2738
DOI: 10.1055/s-0034-1381059
synpacts
© Georg Thieme Verlag Stuttgart · New York

Adapting Melanogenesis to a Regioselective C–H Functionalization of Phenols

Kenneth Virgel N. Esguerra
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada   Email: jean-philip.lumb@mcgill.ca
,
Jean-Philip Lumb*
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada   Email: jean-philip.lumb@mcgill.ca
› Author Affiliations
Further Information

Publication History

Received: 10 June 2015

Accepted: 04 August 2015

Publication Date:
16 September 2015 (online)

Abstract

The importance of aromatic carbon–heteroatom bonds to the function of natural products, electronic materials, and pharmaceutically active compounds motivates considerable effort to improve the efficiency of constructing these bonds. Melanogenesis, which is a ubiquitous process by which organisms produce pigments, generates functional materials with high heteroatom content from simple phenolic precursors at the sole expense of reducing molecular oxygen to water. This article outlines our efforts towards the development of a tyrosinase mimic for the aerobic oxygenation of phenols that were inspired by melanogenesis, and highlights its potential to functionalize multiple aromatic C–H bonds in a single operation.

 
  • References


    • For reviews on metal-catalyzed reactions using O2 as oxidant, see:
    • 1a Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227
    • 1b Campbell AN, Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 1c Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 1d Shi Z, Zhang C, Tang C, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 1e Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 1f Gulzar N, Schweitzer-Chaput B, Klussmann M. Catal. Sci. Technol. 2014; 4: 2778
    • 1g Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 2a Davies HM. L, Du Bois J, Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
    • 2b Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362

      For selected reviews on C–H functionalizations, see:
    • 3a Neufeldt SR, Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 3b Lewis JC, Coelho PS, Arnold FH. Chem. Soc. Rev. 2011; 40: 2003
    • 3c Jia F, Li Z. Org. Chem. Front. 2014; 1: 194
    • 3d Collet F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061

      For discussions on biologically inspired catalysis, see:
    • 4a Que LJr, Tolman WB. Nature 2008; 455: 333
    • 4b Mahadevan V, Gebbink RJ. M. K, Stack TD. P. Curr. Opin. Chem. Biol. 2000; 4: 228
  • 5 Loizzo MR, Tundis R, Menichini F. Compr. Rev. Food Sci. Food Saf. 2012; 11: 378
  • 6 Simon JD, Peles D, Wakamatsu K, Ito S. Pigment Cell Melanoma Res. 2009; 22: 563
  • 7 Sugumaran M. FEBS Lett. 1991; 295: 233
  • 8 Riley PA, Ramsden CA, Land EJ. In Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and Pathological Functions . Boranovsky J, Riley PA. Wiley-VCH; Weinheim: 2011. Chap. 3, 63

    • For reviews on C–H aminations, see:
    • 9a Louillat M.-L, Patureau FW. Chem. Soc. Rev. 2014; 43: 901
    • 9b Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 9c Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 9d Davies HM. L, Long MS. Angew. Chem. Int. Ed. 2005; 44: 3518
    • 9e Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
    • 9f Yan X, Yang X, Xi C. Catal. Sci. Technol. 2014; 4: 4169

      For reviews on C–N bond formation by cross-coupling reactions, see:
    • 10a Muci A, Buchwald SL. In Cross-Coupling Reactions: A Practical Guide . Miyaura N. Springer; Berlin: 2002: 131
    • 10b Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 10c Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 10d Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 10e Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 10f Samanta R, Antonchick AP. Synlett 2012; 23: 809
  • 11 Shen Q, Hartwig JF. J. Am. Chem. Soc. 2007; 129: 7734
  • 12 García-Borrón JC, Olivares Sánchez MC In Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and Pathological Functions . Boranovsky J, Riley PA. Wiley-VCH; Weinheim: 2011. Chap. 4, 87
    • 13a Itoh S, Ohshiro Y. Nat. Prod. Rep. 1995; 12: 45
    • 13b Yang J, Cohen Stuart MA, Kamperman M. Chem. Soc. Rev. 2014; 43: 8271
    • 13c Bittner S. Amino Acids 2006; 30: 205
    • 14a Huang Y, Zhang J, Pettus TR. R. Org. Lett. 2005; 7: 5841
    • 14b Pezzella A, Lista L, Napolitano A, d’Ischia M. Tetrahedron Lett. 2005; 46: 3541
    • 14c Barontini M, Bernini R, Crisante F, Fabrizi G. Tetrahedron 2010; 66: 6047

      For reviews on phenol dearomatization strategies, see:
    • 15a Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 15b Liang H, Ciufolini MA. Tetrahedron 2010; 66: 5884
    • 15c Satam V, Harad A, Rajule R, Pati H. Tetrahedron 2010; 66: 7659

      For selected examples of phenol to ortho-quinone transformations mediated by synthetic oxidants, see:
    • 16a Magdziak D, Rodriguez AA, Van De Water RW, Pettus TR. R. Org. Lett. 2002; 4: 285
    • 16b Uyanik M, Mutsuga T, Ishihara K. Molecules 2012; 17: 8604
    • 16c Deya PM, Dopico M, Jeronimo Morey AG. R, Saa JM. Tetrahedron 1987; 43: 3523
    • 16d Saladino R, Neri V, Mincione E, Marini S, Coletta M, Fiorucci C, Filippone P. J. Chem. Soc., Perkin Trans. 1 2000; 581
    • 16e Crandall JK, Zucco M, Kirsch RS, Coppert DM. Tetrahedron Lett. 1991; 32: 5441
    • 16f Barton DH. R, Finet J.-P, Thomas M. Tetrahedron 1988; 44: 6397
    • 17a Park KM, Park KD. J. Mater. Chem. 2011; 21: 15906
    • 17b Kakinoki S, Yamaoka T. Bioconjugate Chem. 2015; 26: 639
    • 17c Liu Y, Zhang B, Javvaji V, Kim E, Lee ME, Raghavan SR, Wang Q, Payne GF. Biochem. Eng. J. 2014; 89: 21
    • 18a Hay AS, Blanchard HS, Endres GF, Eustance JW. J. Am. Chem. Soc. 1959; 81: 6335
    • 18b Kobayashi S, Higashimura H. Prog. Polym. Sci. 2003; 28: 1015
    • 18c Hay AS. J. Polym. Sci., Part A: Polym. Chem. 1998; 36: 505
    • 19a Ling K.-Q, Lee Y, Macikenas D, Protasiewicz JD, Sayre LM. J. Org. Chem. 2003; 68: 1358
    • 19b Kushioka K. J. Org. Chem. 1984; 49: 4456
    • 21a Matsushita M, Kamata K, Yamaguchi K, Mizuno N. J. Am. Chem. Soc. 2005; 127: 6632
    • 21b Armstrong DR, Breckenridge RJ, Cameron C, Nonhebel DC, Pauson PL, Perkins PG. Tetrahedron Lett. 1983; 24: 1071
  • 22 Higashimura H, Fujisawa K, Kubota M, Kobayashi S. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 1955
  • 23 Whiting DA In Comprehensive Organic Synthesis . Vol. 3. Fleming BM. T. Chap. 3.5 Pergamon; Oxford: 1991: 659
    • 25a Cuff ME, Miller KI, van Holde KE, Hendrickson WA. J. Mol. Biol. 1998; 278: 855
    • 25b Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. J. Biol. Chem. 2006; 281: 8981
    • 25c Hakulinen N, Gasparetti C, Kaljunen H, Kruus K, Rouvinen J. J. Biol. Inorg. Chem. 2013; 18: 917
    • 25d Magnus KA, Ton-That H, Carpenter JE. Chem. Rev. 1994; 94: 727
  • 26 Rompel A, Fischer H, Meiwes D, Büldt-Karentzopoulos K, Dillinger R, Tuczek F, Witzel H, Krebs B. J. Biol. Inorg. Chem. 1999; 4: 56
    • 27a Citek C, Lyons CT, Wasinger EC, Stack TD. P. Nat. Chem. 2012; 4: 317
    • 27b Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TD. P. Science 2005; 308: 1890
    • 27c Op’t Holt BT, Vance MA, Mirica LM, Heppner DE, Stack TD. P, Solomon EI. J. Am. Chem. Soc. 2009; 131: 6421
    • 28a Palavicini S, Granata A, Monzani E, Casella L. J. Am. Chem. Soc. 2005; 127: 18031
    • 28b Itoh S, Kumei H, Taki M, Nagatomo S, Kitagawa T, Fukuzumi S. J. Am. Chem. Soc. 2001; 123: 6708
    • 28c Yamazaki S.-i, Itoh S. J. Am. Chem. Soc. 2003; 125: 13034
    • 29a Que LJr, Tolman WB. Angew. Chem. Int. Ed. 2002; 41: 1114
    • 29b Halfen JA, Mahapatra S, Wilkinson EC, Kaderli S, Young VG, Que LJr, Zuberbühler AD, Tolman WB. Science 1996; 271: 1397
    • 29c Tolman WB. Acc. Chem. Res. 1997; 30: 227
  • 30 Bulkowski JE. US 4545937, 1985
  • 31 Réglier M, Jorand C, Waegell B. J. Chem. Soc., Chem. Commun. 1990; 1752
    • 32a Rolff M, Schottenheim J, Peters G, Tuczek F. Angew. Chem. Int. Ed. 2010; 49: 6438
    • 32b Schottenheim J, Fateeva N, Thimm W, Krahmer J, Tuczek F. Z. Anorg. Allg. Chem. 2013; 639: 1491
    • 32c Hamann JN, Tuczek F. Chem. Commun. 2014; 50: 2298
    • 32d Schottenheim J, Gernert C, Herzigkeit B, Krahmer J, Tuczek F. Eur. J. Inorg. Chem. 2015; 3501
  • 33 Wilfer C, Liebhäuser P, Erdmann H, Hoffmann A, Herres-Pawlis S. Eur. J. Inorg. Chem. 2015; 494
  • 34 Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanović-Burmazović I, Wasinger EC, Stack TD. P, Herres-Pawlis S. Angew. Chem. Int. Ed. 2013; 52: 5398
  • 35 Corey EJ, Achiwa K. J. Am. Chem. Soc. 1969; 91: 1429
  • 36 Esguerra KV. N, Fall Y, Petitjean L, Lumb J.-P. J. Am. Chem. Soc. 2014; 136: 7662
  • 37 Brackman W, Havinga E. Recl. Trav. Chim. Pays-Bas 1955; 74: 937
  • 38 Reinaud O, Capdevielle P, Maumy M. Tetrahedron Lett. 1985; 26: 3993
  • 39 Ravasio N, Gargano M, Rossi M. Stud. Surf. Sci. Catal. 1990; 55: 139
  • 40 Chioccara F, Di Gennaro P, La Monica G, Sebastiano R, Rindone B. Tetrahedron 1991; 47: 4429
  • 41 Sayre LM, Nadkarni DV. J. Am. Chem. Soc. 1994; 116: 3157
  • 42 Horswill EC, Ingold KU. Can. J. Chem. 1966; 44: 263
  • 43 Esguerra KV. N, Fall Y, Lumb J.-P. Angew. Chem. Int. Ed. 2014; 53: 5877
    • 44a Hay AS. US 3914266, 1979
    • 44b Hay AS. US 3432469A, 1969
  • 45 Hay AS. US 4028341, 1975
  • 46 Mirica LM, Vance M, Rudd DJ, Hedman B, Hodgson KO, Solomon EI, Stack TD. P. J. Am. Chem. Soc. 2002; 124: 9332