Synlett 2015; 26(16): 2325-2326
DOI: 10.1055/s-0034-1381172
spotlight
© Georg Thieme Verlag Stuttgart · New York

Indole, a Privileged Structural Core Motif

Isaac Giménez Sonsona
Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, E-50009 Zaragoza, Spain   eMail: sonsona@unizar.es
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. August 2015 (online)

Introduction

Indole (1), denominated by some authors as The Lord of the Rings of heterocyclic compounds[1] due to its importance in fields like chemistry, biology, and medicine,[2] represents the structural core of many natural and non-natural products with a wide range of biological properties, including antiviral[3] and anticancer[4] activities. An example of this spectrum of utilities is Arbidol (2), which is administered as a drug in Russia and China against influenza and other respiratory viral infections.[5] Recent examples of other applications of indole-containing compounds are their potential use in SPECT imaging or detecting Aβ plaques in Alzheimer’s disease, as compound 3,[6] or their use as ligands in the synthesis of organometallic complexes with optoelectronic properties and with potential use in the construction of light-emitting devices.[7]

Zoom Image
Figure 1 Indole-based target compounds
 
  • References

  • 1 Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
  • 2 Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
  • 3 Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 4a Singla R, Singh V, Negi A. Adv. J. Pharm. Life sci. Res. 2013; 1: 7
    • 4b Kumar NM, Kumar D. Chem. Biol. 2013; 3: 276
  • 5 Blaising J, Polyak SJ, Pécheur E.-I. Antiviral Res. 2014; 107: 84
    • 6a Yang Y, Jia H.-M, Liu B.-L. Molecules 2012; 17: 4252
    • 6b Yang Y, Cui M. Eur. J. Med. Chem. 2014; 87: 703
  • 7 Yu J, Luo J, Chen Q, He K, Meng F, Deng X, Wang Y, Tan H, Jiang H, Zhu W. Tetrahedron 2014; 70: 1246
  • 8 Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 9a Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
    • 9b Strategic Applications of Named Reactions in Organic Synthesis. Kürti L, Czakó B. Elsevier Academic Press; Amsterdam: 2005
  • 10 Lv Z, Li Z, Liang G. Org. Lett. 2014; 16: 1653
  • 11 Zhang N, Zhang X, Zhu J, Turpoff A, Chen G, Morrill C, Huang S, Lennox W, Kakarla R, Liu R, Li C, Ren H, Almstead N, Venkatraman S, Njoroge FG, Gu Z, Clausen V, Graci J, Jung SP, Zheng Y, Colacino JM, Lahser F, Sheedy J, Mollin A, Weetall M, Nomeir A, Karp GM. J. Med. Chem. 2014; 57: 2121
  • 12 McLaughlin EC, Norman MW, Ko TK, Stolt I. Tetrahedron Lett. 2014; 55: 2609
  • 13 Lanke V, Prabhu KR. Org. Lett. 2013; 15: 6262
  • 14 Liebhold M, Li S.-M. Org. Lett. 2013; 15: 5834
  • 15 Zhou L.-J, Zhang Y.-C, Zhao J.-J, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 10390