Aktuelle Neurologie 2014; 41(10): 597-607
DOI: 10.1055/s-0034-1390482
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

MRT-Diagnostik der Hirnnerven und ihrer Läsionen

MRI of the Cranial Nerves and their Lesions
K. Bochmann
1   Abteilung für Neuroradiologie, Klinikum der Universität München
,
N. Lummel
1   Abteilung für Neuroradiologie, Klinikum der Universität München
,
J. Linn
1   Abteilung für Neuroradiologie, Klinikum der Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
08 January 2015 (online)

Zusammenfassung

In der radiologischen Diagnostik des Hirnstamms bzw. der Hirnnerven stellt die Magnetresonanztomografie (MRT) heute den Goldstandard dar. Um die Hirnnerven im zisternalen Segment sowie im Sinus cavernosus darstellen zu können werden dabei vor allem hochauflösende Steady-State-Sequenzen verwendet. Zur Beurteilung der knöchernen Felsenbeinstrukturen ist die hochauflösende Computertomografie (HRCT) jedoch nach wie vor die Methode der Wahl. In diesem Artikel werden die diagnostischen Möglichkeiten und die neuen Entwicklungen in der Schnittbilddiagnostik dieser komplexen Hirnstrukturen dargelegt, wobei der Fokus auf der MRT-Diagnostik liegt.

Abstract

To date, magnetic resonance imaging (MRI) represents the gold standard in the radiological diagnostics of the brain stem and the cranial nerves. In particular, the high-resolution steady-state sequences are used to image the cisternal and the cavernous segments of the cranial nerves. In contrast, high-resolution computed tomography (HRCT) is the method of choice to evaluate the bony structures of the petrous bone. This review illustrates the feasibilities and new developments in the diagnostic imaging of these complex brain structures, with focus on MRI.

 
  • Literatur

  • 1 Borges A, Casselman J. Imaging the cranial nerves: Part I: methodology, infectious and inflammatory, traumatic and congenital lesions. Eur Radiol 2007; 17: 2112-2125
  • 2 Borges A, Casselman J. Imaging the cranial nerves: part II: primary and secondary neoplastic conditions and neurovascular conflicts. Eur Radiol 2007; 17: 2332-2344
  • 3 Chen X, Weigel D, Ganslandt O et al. Diffusion tensor imaging and white matter tractography in patients with brainstem lesions. Acta Neurochir (Wien) 2007; 149: 1117-1131 discussion 1131
  • 4 Habas C, Cabanis EA. Anatomical parcellation of the brainstem and cerebellar white matter: a preliminary probabilistic tractography study at 3T. Neuroradiology 2007; 49: 849-863
  • 5 Habas C, Cabanis EA. Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3T. Neuroradiology 2007; 49: 777-784
  • 6 Kamali A, Kramer LA, Butler IJ et al. Diffusion tensor tractography of the somatosensory system in the human brainstem: initial findings using high isotropic spatial resolution at 3.0T. Eur Radiol 2009; 19: 1480-1488
  • 7 Nagae-Poetscher LM, Jiang H, Wakana S et al. High-resolution diffusion tensor imaging of the brain stem at 3T. AJNR Am J Neuroradiol 2004; 25: 1325-1330
  • 8 Salamon N, Sicotte N, Alger J et al. Analysis of the brain-stem white-matter tracts with diffusion tensor imaging. Neuroradiology 2005; 47: 895-902
  • 9 Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J 1994; 66: 259-267
  • 10 Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J Magn Reson 2011; 213: 560-570
  • 11 Einstein Jr AB. Hippocrates Meets Wall Street. Cancer control 1996; 3: 237-239
  • 12 Moseley ME, Cohen Y, Kucharczyk J et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990; 176: 439-445
  • 13 Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344
  • 14 Le Bihan D, Breton E, Lallemand D et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401-407
  • 15 Adachi M, Kabasawa H, Kawaguchi E. Depiction of the cranial nerves within the brain stem with use of PROPELLER multishot diffusion-weighted imaging. AJNR Am J Neuroradiol 2008; 29: 911-912
  • 16 Haacke EM, Xu Y, Cheng YC et al. Susceptibility weighted imaging (SWI). Magn Reson Med 2004; 52: 612-618
  • 17 Linn J, Bruckmann H. Differential diagnosis of nontraumatic intracerebral hemorrhage. Klin Neuroradiol 2009; 19: 45-61
  • 18 Manova ES, Habib CA, Boikov AS et al. Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2009; 30: 569-574
  • 19 Fatterpekar GM, Naidich TP, Delman BN et al. Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. AJNR Am J Neuroradiol 2002; 23: 1313-1321
  • 20 Gizewski ER, Maderwald S, Linn J et al. High-resolution anatomy of the human brain stem using 7-T MRI: improved detection of inner structures and nerves?. Neuroradiology 2014; 56: 177-186
  • 21 Casselman JW, Kuhweide R, Deimling M et al. Constructive interference in steady state-3DFT MR imaging of the inner ear and cerebellopontine angle. AJNR Am J Neuroradiol 1993; 14: 47-57
  • 22 Hatipoglu HG, Durakoglugil T, Ciliz D et al. Comparison of FSE T2W and 3D FIESTA sequences in the evaluation of posterior fossa cranial nerves with MR cisternography. Diagn Interv Radiol 2007; 13: 56-60
  • 23 Held P, Fellner C, Fellner F et al. MRI of inner ear anatomy using 3D MP-RAGE and 3D CISS sequences. Br J Radiol 1997; 70: 465-472
  • 24 Jung NY, Moon WJ, Lee MH et al. Magnetic resonance cisternography: comparison between 3-dimensional driven equilibrium with sensitivity encoding and 3-dimensional balanced fast-field echo sequences with sensitivity encoding. J Comput Assist Tomogr 2007; 31: 588-591
  • 25 Linn J, Moriggl B, Schwarz F et al. Cisternal segments of the glossopharyngeal, vagus, and accessory nerves: detailed magnetic resonance imaging-demonstrated anatomy and neurovascular relationships. J Neurosurg 2009; 110: 1026-1041
  • 26 Mikami T, Minamida Y, Yamaki T et al. Cranial nerve assessment in posterior fossa tumors with fast imaging employing steady-state acquisition (FIESTA). Neurosurg Rev 2005; 28: 261-266
  • 27 Naraghi R, Hastreiter P, Tomandl B et al. Three-dimensional visualization of neurovascular relationships in the posterior fossa: technique and clinical application. J Neurosurg 2004; 100: 1025-1035
  • 28 Seitz J, Held P, Frund R et al. Visualization of the IXth to XIIth cranial nerves using 3-dimensional constructive interference in steady state, 3-dimensional magnetization-prepared rapid gradient echo and T2-weighted 2-dimensional turbo spin echo magnetic resonance imaging sequences. J Neuroimaging 2001; 11: 160-164
  • 29 Yousry I, Camelio S, Schmid UD et al. Visualization of cranial nerves I–XII: value of 3D CISS and T2-weighted FSE sequences. Eur Radiol 2000; 10: 1061-1067
  • 30 Yousry I, Moriggl B, Dieterich M et al. MR anatomy of the proximal cisternal segment of the trochlear nerve: neurovascular relationships and landmarks. Radiology 2002; 223: 31-38
  • 31 Yousry I, Moriggl B, Holtmannspoetter M et al. Detailed anatomy of the motor and sensory roots of the trigeminal nerve and their neurovascular relationships: a magnetic resonance imaging study. J Neurosurg 2004; 101: 427-434
  • 32 Bochmann K. Prävalenz asymptomatischer Gefäß-Nerv-Kontakte bei gesunden Kontrollpersonen. In: DGNR. Köln, Germany: Vortrag DW004; 2012
  • 33 Yousry I, Moriggl B, Schmid UD et al. Detailed anatomy of the intracranial segment of the hypoglossal nerve: neurovascular relationships and landmarks on magnetic resonance imaging sequences. J Neurosurg 2002; 96: 1113-1122
  • 34 Adams ME, Linn J, Yousry I. Pathology of the ocular motor nerves III, IV, and VI. Neuroimaging Clin N Am 2008; 18: 261-282 preceding x-x
  • 35 Evans RW, Torelli P, Manzoni GC. Glossopharyngeal neuralgia. Headache 2006; 46: 1200-1202
  • 36 Hufner K, Barresi D, Glaser M et al. Vestibular paroxysmia: diagnostic features and medical treatment. Neurology 2008; 71: 1006-1014
  • 37 Hufner K, Linn J, Strupp M. Recurrent attacks of vertigo with monocular oscillopsia. Neurology 2008; 71: 863
  • 38 Linn J, Schwarz F, Reinisch V et al. Ophthalmoplegic migraine with paresis of the sixth nerve: a neurovascular compression syndrome?. Cephalalgia 2008; 28: 667-670
  • 39 Meaney JF, Eldridge PR, Dunn LT et al. Demonstration of neurovascular compression in trigeminal neuralgia with magnetic resonance imaging. Comparison with surgical findings in 52 consecutive operative cases. J Neurosurg 1995; 83: 799-805
  • 40 Prasad S, Galetta S. Trigeminal neuralgia: historical notes and current concepts. Neurologist 2009; 15: 87-94
  • 41 Sindou MP, Polo G, Fischer C et al. Neurovascular conflict and hemifacial spasm. Suppl Clin Neurophysiol 2006; 58: 274-281
  • 42 Straube A, Linn J. Unilateral headache attacks and ipsilateral atrophy of the tongue due to neurovascular compression of the hypoglossal nerve. Cephalalgia 2008; 28: 996-998
  • 43 Yousry I, Dieterich M, Naidich TP et al. Superior oblique myokymia: magnetic resonance imaging support for the neurovascular compression hypothesis. Ann Neurol 2002; 51: 361-368
  • 44 Zakrzewska JM. Diagnosis and differential diagnosis of trigeminal neuralgia. Clin J Pain 2002; 18: 14-21
  • 45 Adamczyk M, Bulski T, Sowińska J et al. Trigeminal nerve-artery contact in people without trigeminal neuralgia – MR study. Med Sci Monit 2007; 13 (Suppl. 01) 38-43
  • 46 Kress B, Schindler M, Rasche D et al. Trigeminal neuralgia: how often are trigeminal nerve-vessel contacts found by MRI in normal volunteers. Röfo 2006; 178: 313-315
  • 47 Wilkins RH. Hemifacial spasm: a review. Surg Neurol 1991; 36: 251-277
  • 48 Bruyn GW. Glossopharyngeal neuralgia. Cephalalgia 1983; 3: 143-157
  • 49 Carlow TJ. Oculomotor ophthalmoplegic migraine: is it really migraine? J Neuroophthalmol. 2002; 22: 215-221
  • 50 Lal V, Sahota P, Singh P et al. Ophthalmoplegia with migraine in adults: is it ophthalmoplegic migraine?. Headache 2009; 49: 838-850
  • 51 Lance JW, Zagami AS. Ophthalmoplegic migraine: a recurrent demyelinating neuropathy?. Cephalalgia 2001; 21: 84-89
  • 52 Ambrosetto P, Nicolini F, Zoli M et al. Ophthalmoplegic migraine: From questions to answers. Cephalalgia 2014; 34: 917-919
  • 53 Goldenberg-Cohen N, Miller NR. Noninvasive neuroimaging of basilar artery dolichoectasia in a patient with an isolated abducens nerve paresis. Am J Ophthalmol 2004; 137: 365-367
  • 54 Narai H, Manabe Y, Deguchi K et al. Isolated abducens nerve palsy caused by vascular compression. Neurology 2000; 55: 453-454
  • 55 Tilikete C, Vial C, Niederlaender M et al. Idiopathic ocular neuromyotonia: a neurovascular compression syndrome?. J Neurol Neurosur Psychiatry 2000; 69: 642-644
  • 56 Thömke F, Gawehn J. Vascular third nerve compression – a possible cause of episodic vertical diplopia?. J Neuroophthalmol 2006; 30: 125-127
  • 57 De Ridder D, Moller A, Verlooy J et al. Is the root entry/exit zone important in microvascular compression syndromes?. Neurosurgery 2002; 51: 427-433 discussion 433–424
  • 58 Lang J. Neuroanatomy of the optic, trigeminal, facial, glossopharyngeal, vagus, accessory and hypoglossal nerves (author’s transl). Arch Otorhinolaryngol 1981; 231: 1-69
  • 59 Koch MA, Glauche V, Finsterbusch J et al. Distortion-free diffusion tensor imaging of cranial nerves and of inferior temporal and orbitofrontal white matter. NeuroImage 2002; 17: 497-506
  • 60 Abe O, Mori H, Aoki S et al. Periodically rotated overlapping parallel lines with enhanced reconstruction-based diffusion tensor imaging. Comparison with echo planar imaging-based diffusion tensor imaging. J Comput Assist Tomogr 2004; 28: 654-660
  • 61 Wang FN, Huang TY, Lin FH et al. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005; 54: 1232-1240
  • 62 Herweh C, Kress B, Rasche D et al. Loss of anisotropy in trigeminal neuralgia revealed by diffusion tensor imaging. Neurology 2007; 68: 776-778
  • 63 Lutz J, Linn J, Mehrkens JH et al. Trigeminal neuralgia due to neurovascular compression: high-spatial-resolution diffusion-tensor imaging reveals microstructural neural changes. Radiology 2011; 258: 524-530
  • 64 Bochmann K, Lutz J, Mehrkens JH et al. Darstellung der strukturellen Integrität des N. trigeminus mittels Diffusions Tensor-Imaging: Hilfreich zur Differenzierung zwischen symptomatischen und asymptomatischen Gefäß-Nerv-Kontakten?. Clin Neuroradiol 2013; 23 (Suppl. 01) 108
  • 65 Linn J, Peters F, Lummel N et al. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3 Tesla using a contrast-enhanced MR angiography. Neuroradiology 2011; 53: 947-954
  • 66 Linn J, Peters F, Moriggl B et al. The jugular foramen: imaging strategy and detailed anatomy at 3T. AJNR Am J Neuroradiol 2009; 30: 34-41
  • 67 Yousry I, Moriggl B, Schmid UD et al. Trigeminal ganglion and its divisions: detailed anatomic MR imaging with contrast-enhanced 3D constructive interference in the steady state sequences. AJNR Am J Neuroradiol 2005; 26: 1128-1135
  • 68 Yagi A, Sato N, Taketomi A et al. Normal cranial nerves in the cavernous sinuses: contrast-enhanced three-dimensional constructive interference in the steady state MR imaging. AJNR Am J Neuroradiol 2005; 26: 946-950
  • 69 De Foer B, Vercruysse JP, Bernaerts A et al. The value of single-shot turbo spin-echo diffusion-weighted MR imaging in the detection of middle ear cholesteatoma. Neuroradiology 2007; 49: 841-848
  • 70 De Foer B, Vercruysse JP, Pilet B et al. Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR Am J Neuroradiol 2006; 27: 1480-1482
  • 71 Vercruysse JP, De Foer B, Pouillon M et al. The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Eur Radiol 2006; 16: 1461-1467
  • 72 De Foer B, Vercruysse JP, Bernaerts A et al. Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol 2008; 29: 513-517
  • 73 Lehmann P, Saliou G, Brochart C et al. 3T MR imaging of postoperative recurrent middle ear cholesteatomas: value of periodically rotated overlapping parallel lines with enhanced reconstruction diffusion-weighted MR imaging. AJNR Am J Neuroradiol 2009; 30: 423-427
  • 74 Nakashima T, Naganawa S, Katayama N et al. Clinical significance of endolymphatic imaging after intratympanic gadolinium injection. Acta Otolaryngol Suppl 2009; 560: 9-14
  • 75 Nakashima T, Naganawa S, Sugiura M et al. Visualization of endolymphatic hydrops in patients with Meniere’s disease. Laryngoscope 2007; 117: 415-420
  • 76 Gurkov R, Kantner C, Strupp M et al. Endolymphatic hydrops in patients with vestibular migraine and auditory symptoms. Eur Arch Otorhinolaryngol 2013; DOI: 10.1007/s00405-013-2751-2.
  • 77 Naganawa S, Yamazaki M, Kawai H et al. Imaging of endolymphatic and perilymphatic fluid after intravenous administration of single-dose gadodiamide. Magn Reson Med Sci 2012; 11: 145-150