Pneumologie 2015; 69(08): 477-482
DOI: 10.1055/s-0034-1392446
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

ROS1-Translokationen im nicht-kleinzelligen Lungenkarzinom

ROS1-Translocations in Non-Small Cell Lung Cancer
A. Warth
1   Institut für Pathologie, Universität Heidelberg
3   Translational Lung Research Center Heidelberg, Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
,
W. Weichert
1   Institut für Pathologie, Universität Heidelberg
,
M. Reck
2   LungenClinic Großhansdorf, Abteilung für Thoraxonkologie
4   Airway Research Center North, Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
,
N. Reinmuth
2   LungenClinic Großhansdorf, Abteilung für Thoraxonkologie
4   Airway Research Center North, Mitglied des Deutschen Zentrums für Lungenforschung (DZL)
› Author Affiliations
Further Information

Publication History

eingereicht 22 April 2015

akzeptiert nach Revision 19 May 2015

Publication Date:
10 August 2015 (online)

Zusammenfassung

Ziel: Zusammenfassung von Prävalenz, Testung und möglichen Behandlungsansätzen bei Patienten mit nicht-kleinzelligem Lungenkarzinom (NSCLC) und Aktivierung von ROS1.

Methodik: Internet-Recherche bezüglich klinischer und präklinischer Studien sowie Suche nach aktuellen Studien in amerikanischen Datenbanken.

Ergebnisse: Translokationen von ROS1 können zu einer Überexpression des Rezeptors führen und werden bei ungefähr 1 – 2 % aller NSCLC mit ganz überwiegender Prävalenz bei Adenokarzinomen gefunden. Standard des Nachweises sind derzeit Hybridisierungstechniken. Erste Ergebnisse aus Phase-I-Studien mit ROS1-Inhibitoren zeigen ein Ansprechen um 70 – 80 % und eine mediane progressionsfreie Überlebenszeit über 19 Monate bei insgesamt guter Verträglichkeit.

Schlussfolgerung: ROS1-Translokationen können gezielt und mit guten Ansprech- und Verlaufsdaten behandelt werden und sollten daher bei pulmonalen Adenokarzinomen im Stadium IV routinemäßig analysiert werden.

Abstract

Aim: Summary of prevalence, testing and treatment approaches in patients with non-small cell lung cancer (NSCLC) and ROS1 activation.

Methods: Internet-based search for clinical and preclinical studies as well as search for ongoing studies in web-based databases.

Results: ROS1 translocations lead to tyrosine kinase activation and can be detected in 1 – 2 % of all NSCLC and in 3 – 6 % of pulmonary adenocarcinoma patients, respectively, using in situ hybridization techniques. Results from phase I clinical studies using the ROS1 inhibitor crizotinib indicate response rates of 70 – 80 % and a median progression-free survival of about 19 months. The therapy was generally well tolerated.

Conclusions: NSCLC harbouring ROS1-translocations can be treated with targeted therapy leading to promising response and survival in patients. Hence, these alterations should be included into current molecular testing panels in stage IV pulmonary adenocarcinomas.

 
  • Literatur

  • 1 Reck M, Popat S, Reinmuth N et al. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 (Suppl. 03) iii27-39
  • 2 Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA 1987; 84: 9270-9274
  • 3 Rikova K, Guo A, Zeng Q et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190-1203
  • 4 Gu TL, Deng X, Huang F et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One 2011; 6: e15640
  • 5 Lee J, Lee SE, Kang SY et al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer 2013; 119: 1627-1635
  • 6 Aisner DL, Nguyen TT, Paskulin DD et al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol Cancer Res 2014; 12: 111-118
  • 7 Birch AH, Arcand SL, Oros KK et al. Chromosome 3 anomalies investigated by genome wide SNP analysis of benign, low malignant potential and low grade ovarian serous tumours. PLoS One 2011; 6: e28250
  • 8 Takeuchi K, Soda M, Togashi Y et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med 2012; 18: 378-381
  • 9 Yoshida A, Kohno T, Tsuta K et al. ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol 2013; 37: 554-562
  • 10 von Laffert M, Warth A, Penzel R et al. Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC): results of a multi-centre ALK-testing. Lung Cancer 2013; 81: 200-206
  • 11 Warth A, Endris V, Kriegsmann M et al. [Molecular diagnostics of non-small cell lung cancer: New markers and technologies]. Pathologe 2015; 36: 154-163
  • 12 Warth A, Muley T, Dienemann H et al. ROS1 expression and translocations in non-small-cell lung cancer: clinicopathological analysis of 1478 cases. Histopathology 2014; 65: 187-194
  • 13 Sholl LM, Sun H, Butaney M et al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am J Surg Pathol 2013; 37: 1441-1449
  • 14 Yoshida A, Tsuta K, Wakai S et al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod Pathol 2013; 27: 711-720
  • 15 Lee HJ, Seol HS, Kim JY et al. ROS1 receptor tyrosine kinase, a druggable target, is frequently overexpressed in non-small cell lung carcinomas via genetic and epigenetic mechanisms. Ann Surg Oncol 2013; 20: 200-208
  • 16 Go H, Kim DW, Kim D et al. Clinicopathologic analysis of ROS1-rearranged non-small-cell lung cancer and proposal of a diagnostic algorithm. J Thorac Oncol 2013; 8: 1445-1450
  • 17 Bergethon K, Shaw AT, Ou SH et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012; 30: 863-870
  • 18 Davies KD, Le AT, Theodoro MF et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res 2012; 18: 4570-4579
  • 19 Davies KD, Doebele RC. Molecular pathways: ROS1 fusion proteins in cancer. Clin Cancer Res 2013; 19: 4040-4045
  • 20 Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist 2013; 18: 865-875
  • 21 Kim HR, Lim SM, Kim HJ et al. The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann Oncol 2013; 24: 2364-2370
  • 22 Mescam-Mancini L, Lantuejoul S, Moro-Sibilot D et al. On the relevance of a testing algorithm for the detection of ROS1-rearranged lung adenocarcinomas. Lung Cancer 2014; 83: 168-173
  • 23 Groschel A, Warth A, Reinmuth N. [Crizotinib – molecular therapy for lung cancer]. Pneumologie 2013; 67: 205-208
  • 24 Shaw AT, Ou SH, Bang YJ et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med 2014; 371: 1963-1971
  • 25 Mazieres J, Zalcman G, Crino L et al. Efficacy of crizotinib in ROS1-rearranged lung cancer: The European experience. J Clin Oncol 2014; 32 abstr 11035
  • 26 Proia DA, Acquaviva J, Jiang Q et al. Preclinical activity of the Hsp90 inhibitor, ganetespib, in ALK- and ROS1-driven cancers. J Clin Oncol 2012; 30 abstr 3090
  • 27 Awad MM, Katayama R, McTigue M et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 2013; 368: 2395-2401
  • 28 Kris MG, Johnson BE, Berry LD et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014; 311: 1998-2006
  • 29 Travis WD, Brambilla E, Noguchi M et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011; 6: 244-285
  • 30 Warth A, Muley T, Herpel E et al. Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 2012; 61: 1017-1025
  • 31 Endris V, Penzel R, Warth A et al. Molecular diagnostic profiling of lung cancer specimens with a semiconductor-based massive parallel sequencing approach: feasibility, costs, and performance compared with conventional sequencing. J Mol Diagn 2013; 15: 765-775
  • 32 Jamal-Hanjani M, Hackshaw A, Ngai Y et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol 2014; 12: e1001906
  • 33 De Richter P. Current use of ROS1 testing in clinical practice in the United States, France, Germany, Italy, and Japan. J Clin Oncol 2014; 32: e22108
  • 34 https://clinicaltrials.gov [last assessed March 1rst 2015]