Kardiologie up2date 2015; 11(02): 81-93
DOI: 10.1055/s-0034-1392573
Kardiovaskuläre Notfälle
© Georg Thieme Verlag KG Stuttgart · New York

Septischer Schock und septische Kardiomyopathie

Sandra Funcke
,
Peter Mirtschink
,
Sebastian N. Stehr
Further Information

Publication History

Publication Date:
24 July 2015 (online)

Abstract

Sepsis is a very frequent diagnosis in intensive care units. It is associated with a high mortality rate and often affects the cardiovascular system. Moreover, sepsis is the most common form of shock and is often also accompanied by acute organ failure such as myocardial dysfunction. Besides vasoplegia through decrease of systemic vascular resistance, an acute reduction of myocardial contractility and ventricular dilation are the typical signs of sepsis-induced myocardial dysfunction. With the increased availability of bedside transthoracic echocardiography over the last few years, the diagnosis of cardiomyopathy is verified much more frequently in septic patients. Given that the diagnosis is highly complex and characterized by different origins as well as diverse pathogens, it is difficult to make a prediction regarding a prognosis. However, research has shown that it is highly likely that absence of normokinesia will have a negative influence on the prognosis. The underlying pathophysiological mechanisms of sepsis-induced myocardial dysfunction are not completely understood. Infective toxin binding via toll-like receptors to different cell types (such as macrophages, endothelial cells and directly to cardiomyocytes), which leads to increased release of cytokines as well as the activation of the coagulation and the complement system. Additionally, the release of intracellular calcium is impaired and mitochondrial cell respiration is altered resulting in reduced contractility. Despite these findings in recent literature, a specific therapy of these cellular dysfunctions is so far not yet available. Patients should be treated according to both the procedures outlined by the Surviving Sepsis Campaign (especially with the early application of anti-infective therapy), and against acute heart failure, with the goal of normokinesia. Further studies are warranted to investigate the underlying mechanisms in more detail and potentially provide specific and targeted therapeutic approaches which would be of high clinical importance.

Kernaussagen

Sepsis und septischer Schock

  • Die Sepsis ist eine häufige Erkrankung, die nach wie vor mit einer hohen Mortalität assoziiert ist.

  • Der septische Schock ist die häufigste Schockform und geht nicht selten mit akuten Organdysfunktionen, u. a. auch des Herz-Kreislauf-Systems, einher.

Septische Kardiomyopathie

  • Bei der septischen Kardiomyopathie nimmt der periphere vaskuläre Widerstand durch Vasoplegie ab. Außerdem ist eine akute rechts- und/oder linksventrikuläre Funktionseinschränkung mit Abnahme der Kontraktilität zu beobachten.

  • Die Diagnose der septischen Kardiomyopathie wird häufiger gestellt, seitdem die transthorakale Echokardiografie zunehmend bettseitig verfügbar ist.

  • Eine genaue Aussage über die Prognose ist bei der Komplexität des Krankheitsbildes kaum möglich, es ist jedoch davon auszugehen, dass sich Abweichungen von der normokinetischen Arbeit des Herzens negativ auswirken.

  • Die zugrunde liegenden pathophysiologische Mechanismen sind bisher nicht abschließend geklärt. Infektive Toxine binden über Toll-like-Rezeptoren an Makrophagen, Endothelzellen und Kardiomyozyten selbst und vermitteln neben einer Zytokinfreisetzung (u. a. TNF-α, NFκB und Interleukin-1β) eine Aktivierung des Gerinnungs- und Komplementsystems (mit Koagulopathie und Apoptose) und eine verminderte intrazelluläre Kalziumfreisetzung sowie mitochondriale Modifikationen der Zellatmung. Über diese Mechanismen erklärt sich die akut eingeschränkte myokardiale Kontraktilität. Aus diesen Erkenntnissen der Studien der letzten Jahre konnten Hinweise auf den Vorteil einer Herzfrequenzmodulation nachgewiesen werden.

  • Neben der Sepsis-Therapie der Surviving Sepsis Campaign (rasche Einleitung einer kausalen antibiotischen Therapie und supportiver Maßnahmen) könnten Ansätze der Herzinsuffizienztherapie (Betablocker, Kalzium-Sensitizer wie Levosimendan und neue Substanzgruppen wie If-Kanalblocker, z. B. Ivabradin, oder Myosin-Aktivatoren wie Omecamtiv) mit dem Ziel, normokinetische Zustände herzustellen, zum Einsatz kommen.

  • Weitere Studien zur genaueren Aufdeckung der Pathophysiologie sowie das Ableiten kausaler, gezielter Therapieansätze der septischen Kardiomyopathie sind notwendig, um langfristig die Mortalität zu senken.

 
  • Literatur

  • 1 Dellinger RP, Carlet JM, Masur H et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004; 32: 858-873
  • 2 Cecconi M et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40: 1795-1815
  • 3 Alberti C et al. Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 2002; 28: 108-121
  • 4 Levy MM et al. The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med 2010; 36: 222-231
  • 5 Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013; 369: 2063
  • 6 Vincent JL, De Backer D. Circulatory shock. N Engl J Med 2013; 369: 1726-1734
  • 7 Kaukonen KM et al. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 2014; 311: 1308-1316
  • 8 Parker MM et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1984; 100: 483-490
  • 9 Reilly JM et al. A circulating myocardial depressant substance is associated with cardiac dysfunction and peripheral hypoperfusion (lactic acidemia) in patients with septic shock. Chest 1989; 95: 1072-1080
  • 10 Parrillo JE et al. A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 1985; 76: 1539-1553
  • 11 Vieillard-Baron A. Septic cardiomyopathy. Ann Intensive Care 2011; 1: 6
  • 12 Celes MR, Prado CM, Rossi MA. Sepsis: going to the heart of the matter. Pathobiology 2013; 80: 70-86
  • 13 Carre JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochim Biophys Acta 2008; 1777: 763-771
  • 14 Rius J et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008; 453: 807-811
  • 15 De Backer D et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 2013; 41: 791-799
  • 16 Gupta A et al. Chronic peritoneal sepsis: myocardial dysfunction, endothelin and signaling mechanisms. Front Biosci 2005; 10: 3183-3205
  • 17 Wang HY et al. LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol Cell Biochem 2013; 379: 153-159
  • 18 Khadour FH et al. Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol 2002; 283: H1108-1115
  • 19 Mink SN et al. N,N'-diacetylchitobiose, an inhibitor of lysozyme, reverses myocardial depression and lessens norepinephrine requirements in Escherichia coli sepsis in dogs. Shock 2008; 29: 681-687
  • 20 Rudiger A. Beta-block the septic heart. Crit Care Med 2010; 38: 608-612
  • 21 Chew MS et al. Depletion of myocardial glucose is observed during endotoxemic but not hemorrhagic shock in a porcine model. Crit Care 2013; 17: R164
  • 22 Chen ZW et al. TNF-alpha-induced cardiomyocyte apoptosis contributes to cardiac dysfunction after coronary microembolization in mini-pigs. J Cell Mol Med 2014; 18: 1953-1963
  • 23 Landesberg G et al. Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation*. Crit Care Med 2014; 42: 790-800
  • 24 Parrillo JE et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 1990; 113: 227-242
  • 25 Dellinger RP. The Surviving Sepsis Campaign: Where have we been and where are we going?. Cleve Clin J Med 2015; 82: 237-244
  • 26 Vieillard-Baron A et al. Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 2001; 94: 400-406
  • 27 Jardin F et al. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 1999; 116: 1354-1359
  • 28 Vieillard-Baron A et al. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 2008; 36: 1701-1706
  • 29 Kumar A et al. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 2008; 12: R35
  • 30 Zanotti Cavazzoni SL et al. Ventricular dilation is associated with improved cardiovascular performance and survival in sepsis. Chest 2010; 138: 848-855
  • 31 Stehr SN et al. Sepsis: putting knowledge into practice. Internist (Berl) 2013; 54: 63-72 ; quiz 73–74
  • 32 Rivers E et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377
  • 33 Pro CI et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med 2014; 370: 1683-1693
  • 34 ARISE Investigators. Goal-directed resuscitation for patients with early septic shock. N Engl J Med 2014; 371: 1496-1506
  • 35 Asfar P et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med 2014; 370: 1583-1593
  • 36 Levy MM. Early goal-directed therapy: what do we do now?. Crit Care 2014; 18: 705
  • 37 Rudiger A et al. Early functional and transcriptomic changes in the myocardium predict outcome in a long-term rat model of sepsis. Clin Sci (Lond) 2013; 124: 391-401
  • 38 Parker MM et al. Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 1987; 15: 923-929
  • 39 Joulin O et al. Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care 2009; 13: R14
  • 40 Rozec B. How to slow down septic hearts?. J Mol Cell Cardiol 2014; 74: 112-114
  • 41 Morelli A et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 2013; 310: 1683-1691
  • 42 Scheruebel S et al. I(f) blocking potency of ivabradine is preserved under elevated endotoxin levels in human atrial myocytes. J Mol Cell Cardiol 2014; 72: 64-73
  • 43 Nuding S et al. Reducing elevated heart rate in patients with multiple organ dysfunction syndrome by the I (f) (funny channel current) inhibitor ivabradine: MODI (f)Y trial. Clin Res Cardiol 2011; 100: 915-923
  • 44 dos Santos CC et al. Sepsis-induced myocardial depression is associated with transcriptional changes in energy metabolism and contractile related genes: a physiological and gene expression-based approach. Crit Care Med 2010; 38: 894-902
  • 45 Ichinose F et al. Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. Circ Res 2007; 100: 130-139
  • 46 Schilling J et al. Toll-like receptor-mediated inflammatory signaling reprograms cardiac energy metabolism by repressing peroxisome proliferator-activated receptor gamma coactivator-1 signaling. Circ Heart Fail 2011; 4: 474-482
  • 47 Kalbitz M et al. Role of extracellular histones in the cardiomyopathy of sepsis. FASEB J 2015; 29: 2185-2193
  • 48 Krishnagopalan S, Kumar A, Parrillo JE. Myocardial dysfunction in the patient with sepsis. Curr Opin Crit Care 2002; 8: 376-388