Pneumologie 2015; 69(09): 534-544
DOI: 10.1055/s-0034-1392576
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Spiroergometrie bei chronisch obstruktiver Lungenerkrankung (COPD) – atemfunktionelle Phänotypisierung und Schweregradbeurteilung

Cardiopulmonary Exercise Testing in Chronic Obstructive Pulmonary Disease (COPD) – Breath-functional Characterization and Disease Severity Assessment
A. Mühle
1   Internistisches Facharztzentrum Teuchern
,
A. Obst
2   Klinik für Innere Medizin B, Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald
,
J. Winkler
3   Pneumologische Facharztpraxis, Leipzig
,
R. Ewert
2   Klinik für Innere Medizin B, Universitätsmedizin der Ernst-Moritz-Arndt-Universität Greifswald
› Author Affiliations
Further Information

Publication History

eingereicht 18 April 2015

akzeptiert nach Revision 22 June 2015

Publication Date:
23 July 2015 (online)

Zusammenfassung

Die COPD ist eine heterogene Erkrankung mit einem breiten Spektrum klinischer Phänotypen und atemfunktioneller Störungen. Mit der Spiroergometrie steht ein kardiopulmonaler Belastungstest zur Verfügung, der es bei COPD-Patienten ermöglicht, alle Teilbereiche der Atmung abzubilden sowie den Umfang und die Mechanismen einer Leistungseinschränkung zu objektivieren.

Es erfolgte bei 64 COPD-Patienten der GOLD-Stadien II bis IV eine Spiroergometrie mit der Frage, ob diese Methode unter Praxisbedingungen im Vergleich zur Standarddiagnostik eine bessere funktionelle Charakterisierung der Erkrankung COPD ermöglicht.

Wir konnten zeigen, dass die Spiroergometrie in einer pneumologischen Praxis bei stabilen COPD-Patienten aller Schweregrade sicher und aussagefähig durchführbar ist. Mit Hilfe dieser Methode kann eine klinische und prognostische Leistungsbewertung aller Patienten erfolgen. Dabei offenbarten sich bedeutsame Differenzen der Spitzensauerstoffaufnahme innerhalb der einzelnen GOLD-Stadien, sodass die Patienten trotz identischem GOLD-Schweregrad nach spiroergometrischen Kriterien unterschiedlichen Prognosegruppen zuzuordnen waren. Darüber hinaus fanden sich relevante Unterschiede der individuellen Muster von Ventilation und Gasaustausch unter Belastung, welche mit der Lungenfunktionsanalyse in Ruhe nicht zu erfassen, aber auch nicht vorauszubestimmen waren.

Die Spiroergometrie ermöglicht somit, neben einer objektiven klinischen und prognostischen Schweregradbeurteilung, auch eine subtile atemfunktionelle Beschreibung des COPD-Patienten. Der mehrdimensionale Aspekt der Erkrankung mit variablen Störungen der Ventilation, des Gasaustausches, der Zirkulation und des Muskelstoffwechsels sowie assoziierten kardiovaskulären Komorbiditäten konnte detailliert erfasst werden. Die atemfunktionelle Phänotypisierung des COPD-Patienten kann ggf. als Grundlage für ein individualisiertes Therapiemanagement von Wert sein.

Abstract

COPD is a heterogeneous disease with a wide range of clinical phenotypes and breath-functional dysfunctions. Cardiopulmonary exercise testing (CPET) allows describing all component parts of breathing and determining exercise capacity and the mechanisms of exercise limitation.

From these aspects 64 COPD patient stages II, III and IV according to the conventional GOLD classification were examined by means of CPET to evaluate whether CPET can provide a better functional characterization of COPD than the standard investigation procedures in pulmonary practice.

We could show that in pulmonary practice CPET is safely and effectively practicable in stable COPD patients of all GOLD stages. This method allowed a clinical and prognostic disease severity assessment of all patients, proving important differences of peak oxygen uptake in each GOLD stage, so that patients in spite of identical GOLD disease severity were to be assigned to different prognostic groups according CPET criteria.

Furthermore, we found relevant differences of individual breath-functional patterns in exercise, which can neither be objectified nor be prognosticated by standard investigation procedures at rest.

Therefore CPET allows, aside from an objective clinical and prognostic disease severity assessment, also a breath-functional evaluation in a subtly way in COPD patients reflecting the multidimensional background of the disease with variable dysfunctions in pulmonary ventilation, gas exchange, circulation and muscular function as well as associated cardio vascular comorbidities. The breath-functional phenotyping of the COPD patient seems to be meaningful in particular for an individualised therapy management.

 
  • Literatur

  • 1 Agusti A, Vestbo J. Current controversies and future perspectives in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 184: 507-513
  • 2 Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012; 379: 1341-1351
  • 3 Rabe KF, Wedzicha JA. Controversies in treatment of chronic obstructive pulmonary disease. Lancet 2011; 378: 1038-1047
  • 4 Soler AM, Wain LV, Repapi E et al. Effect of five genetic variants associated with lung function on the risk of chronic obstructive pulmonary disease, an their joint effects on lung function. Am J Respir Crit Care Med 2011; 184: 786-795
  • 5 Gosselink JV, Hayashi S, Elliot WM et al. Differential expression of tissue repair genes in the pathogenesis of COPD. Am J Respir Crit Care Med 2010; 181 : 1329-1335
  • 6 Han MK, Augusti A, Calverley PM et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010; 182: 598-604
  • 7 Miravitlles M, Calle M, Soler-Cataluna JS. Clinical phenotypes of COPD: identification, definition and implications for guidelines. Arch Bronconeumol 2012; 48: 86-98
  • 8 Mahler DA, Harver A. A factor analysis of dyspnea ratings, respiratory muscle strength, and lung function in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1992; 145: 467-470
  • 9 Montes de Oca M, Rassulo J, Celli BR. Respiratory muscle and cardio-pulmonary function during exercise in very severe COPD. Am J Respir Crit Care Med 1996; 154: 1284-1289
  • 10 O´Donnell DE, Webb KA. Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation. Am Rev Respir Dis 1993; 148: 1351-1357
  • 11 Oga T, Nishimura K, Tsukino M et al. Exercise capacity deterioration in patients with COPD: longitudinal evaluation over 5 years. Chest 2005; 128: 62-69
  • 12 Oga T, Tsukino M, Hajiro T et al. Predictive properties of different multidimensional staging systems in patients with chronic obstructive pulmonary disease. International Journal of COPD 2011; 6: 521-526
  • 13 Cotes JE, Chinn DJ, Quanjer PH et al. Standardization of the measurement of Transfer Factor (Diffusing Capacity). Eur Respir J 1993; 16: 41-52
  • 14 Crièe CP, Berdel D, Heise D et al. Empfehlungen der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin. Empfehlungen zur Ganzkörperplethysmographie (Bodyplethysmographie). München; Orlando: Dustri-Verlag Dr. Karl Feistle; 2009
  • 15 Crièe C-P, Berdel D, Heise D et al. Empfehlungen der Deutschen Atemwegsliga zur Spirometrie. München; Orlando: Dustri-Verlag Dr. Karl Feistle; 2006
  • 16 Celli BR, Cote C, Marin JM et al. The body mass index, airflow obstruction, dyspnea, exercise performance (BODE) index in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 1005-1012
  • 17 American Thoracic Society. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166: 111-117
  • 18 Balady G, Arena R, Sietsema K et al. Clinicians Guide to Cardiopulmonary Exercise Testing in Adults: A Scientific Statement From the American Heart Association. Circulation 2010; 122: 191-225
  • 19 Jones NL, Makrides L, Hitchcock C et al. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 1985; 131: 700-708
  • 20 Koch B, Schäper C, Ittermann T et al. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur Respir J 2009; 33: 389-397
  • 21 Gebrauchsanweisung für Schiller Ergo-Spirometrie-Geräte mit Ganshorn PowerCube Gasanalysator. Ausgabedatum: 21.11. 2007
  • 22 Gitt AK. Ergospirometrie. In: Löllgen H, Erdmann E, Gitt AK, Hrsg. Ergometrie. 3. Auflage. Heidelberg: Springer Medizin Verlag; 2010
  • 23 Guenette JA, Webb KA, O’Donnell DE. Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD?. Eur Respir J 2012; 40: 322-329
  • 24 O’Donnell DE, Revill SM, Webb KA. Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164: 770-777
  • 25 ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211-277
  • 26 Cote CG, Pinto-Plata VM, Marin JM et al. The modified BODE index: validation with mortality in COPD. Eur Respir J 2008; 32: 1269-1274
  • 27 Ewert R, Gläser S, Winkler J et al. Spiroergometrie bei Patienten mit chronisch obstruktiver Lungenerkrankung – multizentrischer Vergleich von zwei Belastungsprotokollen. Pneumologie 2012; 66: 402-407
  • 28 Casanova C, Cote C, Marin JM et al. Distance and oxygen desaturation during the 6-min walk test as predictors of long-term mortality in patients with COPD. Chest 2008; 134: 746-752
  • 29 Ong KC, Ong YY. Cardiopulmonary exercise testing in patients with chronic obstructive pulmonary disease. Ann Acad Med Singapore 2000; 29: 648-652
  • 30 Ganju AA, Fuladi AB, Tayade BO et al. Cardiopulmonary exercise testing in evaluation of patients of chronic obstructive pulmonary disease. Indian J Chest Dis Allied Sci 2011; 53: 87-91
  • 31 O’Donnell DE, D’Arsigny C, Fitzpatrick M et al. Exercise hypercapnia in advanced chronic obstructive pulmonary disease: the role of lung hyperinflation. Am J Respir Crit Care Med 2002; 166: 663-668
  • 32 O’Donnell DE, Hamilton AL, Webb KA. Sensory-mechanical relationships during high-intensity, constant-work-rate exercise in COPD. J Appl Physiol 2006; 101: 1025-1035
  • 33 Sinderby C, Spahija J, Beck J et al. Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1637-1641
  • 34 Guenette JA, Chin RC, Cheng S et al. Mechanisms of exercise intolerance in Global Initiative for Chronic Obstructive Lung Disease grade 1 COPD. Eur Respir J 2014; 44: 1177-1187
  • 35 Dantzker DR, D'Alonzo GE. The effect of exercise on pulmonary gas exchange in patients with severe chronic obstructive pulmonary disease. Am Rev Respir Dis 1986; 134: 1135-1139
  • 36 Hiraga T, Maekura R, Okuda Y et al. Prognostic predictors for survival in patients with COPD using cardiopulmonary exercise testing. Clin Physiol Funct Imaging 2003; 23: 324-331
  • 37 Guazzi M, Adams V, Conraads V et al. EACPR/AHA Joint Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Eur Heart J 2012; 33: 2917-2927
  • 38 Stickland MK, Butcher SJ, Marciniuk DD et al. Assessing exercise limitation using cardiopulmonary exercise testing. Pulm Med 2012; 2012 824091
  • 39 Ferrazza AM, Martolini D, Valli G et al. Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 2009; 77: 3-17
  • 40 Agusti AGN, Rodriguez-Roisin R. Effect of pulmonary hypertension on gas exchange. Eur Respir J 1993; 6: 1371-1377
  • 41 Holverda S, Bogaard HJ, Groepenhoff H et al. Cardiopulmonary exercise test characteristics in patients with chronic obstructive pulmonary disease and associated pulmonary hypertension. Respiration 2008; 76: 160-167
  • 42 Pynnaert C, Lamotte M, Naeije R. Aerobic exercise capacity in COPD patients with and without pulmonary hypertension. Respir Med 2010; 104: 121-126
  • 43 Oelberg DA, Kacmarek RM, Pappagianopoulos PP et al. Ventilatory and cardiovascular responses to inspired He-O2 during exercise in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 158: 1876-1882
  • 44 Sala E, Roca J, Marrades RM et al. Effects on endurance training on skeletal muscle bioenergetics in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1999; 159: 1726-1734
  • 45 Vassaux C, Torre-Bouscoulet L, Zeineldine S et al. Effects of hyperinflation on the oxygen pulse as a marker of cardiac performance in COPD. Eur Respir J 2008; 32: 1275-1282
  • 46 Boerrigter B, Trip P, Bogaard HJ et al. Right Atrial Pressure Affects the Interaction between Lung Mechanics and Right Ventricular Function in Spontaneously Breathing COPD Patients. PLoS ONE 2012; 7: e30208
  • 47 Bogaard HJ, Dekker BM, Arntzen BW et al. The haemodynamic response to exercise in chronic obstructive pulmonary disease: assessment by impedance cardiography. Eur Respir J 1998; 12: 374-379
  • 48 Butler J, Schrijen F, Henriquez A et al. Cause of the raised wedge pressure on exercise in chronic obstructive pulmonary disease. Am Rev Respir Dis 1988; 138: 350-354
  • 49 Jörgensen K, Houtz E, Westfelt U et al. Effects of lung volume reduction surgery on left ventricular filling and dimensions in patients with severe emphysema. Chest 2003; 124: 1863-1870
  • 50 Jörgensen K, Müller MF, Nel J et al. Reduced intrathoracic blood volume and left and right ventricular dimensions in patients with severe emphysema. Chest 2007; 131: 1050-1057
  • 51 Matthay RA, Berger HJ, Davies RA et al. Right and left ventricular exercise performance in chronic obstructive pulmonary disease: radionuclide assessment. Ann Intern Med 1980; 93: 234-239
  • 52 Rietema H, Holverda S, Bogaard HJ et al. Sildenafil treatment in COPD does not affect stroke volume or exercise capacity. Eur Respir J 2008; 31: 759-764
  • 53 Lammi MR, Ciccolella D, Marchetti N et al. Increased oxygen pulse after lung volume reduction surgery is associated with reduced dynamic hyperinflation. Eur Respir J 2012; 40: 837-843
  • 54 Caviedes IR, Delgado I, Soto R. Ventilatory inefficiency as a limiting factor for exercise in patients with COPD. Respir Care 2012; 57: 583-589
  • 55 Westhoff M, Rühle KH, Greiwing A et al. Ventilatorische und metabolische (Laktat-) Schwellen. Positionspapier der Arbeitsgemeinschaft Spiroergometrie. Dtsch Med Wochenschr 2013; 138: 275-280