Neuroradiologie Scan 2015; 05(04): 311-328
DOI: 10.1055/s-0034-1392924
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Postoperative Bildgebung des Orbitainhalts[1]

Postoperative imaging of the orbital contents
Michael J. Reiter
,
Ryan B. Schwope
,
Jonathan A. Kini
,
Gerald E. York
,
Abraham W. Suhr
Further Information

Publication History

Publication Date:
22 September 2015 (online)

Zusammenfassung

Die Ophthalmologen führen die verschiedensten Eingriffe am Inhalt der Augenhöhlen durch. Die chirurgische Behandlung von Glaukomen, Katarakten, Netzhautablösungen und Augentraumata oder -tumoren führt zu Veränderungen der Standardanatomie, die bei radiologischen Untersuchungen in vielen Fällen sofort ins Auge springen. Für den Radiologen ist die Fähigkeit, die verschiedenen Bildgebungsmanifestationen nach Augenoperationen richtig zu interpretieren, von entscheidender Bedeutung, wenn er Fehldiagnosen vermeiden will. Besonders wichtig ist, dass er mit den zahlreichen Arten von Implantaten vertraut ist, z. B. mit Glaukomfiltrationsimplantaten, Orbitaimplantaten und Lidgewichten. Kenntnisse der chirurgischen Anamnese des Patienten sind zwar hilfreich, doch liegen solche Informationen zum Zeitpunkt der Interpretation der Bildgebungsbefunde häufig nicht vor. Glücklicherweise gibt es charakteristische posttherapeutische Befunde, die eine Diagnose ermöglichen. Die Bildgebungsmerkmale der am häufigsten durchgeführten ophthalmologischen Eingriffe werden im vorliegenden Beitrag schlaglichtartig vorgestellt; der Schwerpunkt liegt dabei auf der CT und der MRT, da sie zurzeit die wichtigsten Modalitäten zur Beurteilung der Augenhöhlen sind. Glaukomfiltrationsimplantate und die nach einer Enukleation eingesetzten Orbitaimplantate sind 2 der in diesem Zusammenhang besonders interessierenden Objekte, weil ihre Zusammensetzung sich in den letzten 20 Jahren erheblich verändert hat – mit entsprechenden Auswirkungen auf die Bildgebung. Manche Implantate stören die radiologische Darstellung, so z. B. das Glaukomimplantat nach Baerveldt und die Lidgewichte aus Platin. Berichtet wird auch über die MRT-Sicherheitsprofile zahlreicher Implantate.

Abstract

Ophthalmologists perform a wide array of interventions on the orbital contents. The surgical treatment of glaucoma, cataracts, retinal detachment, and ocular trauma or malignancy results in alteration of the standard anatomy, which is often readily evident at radiologic examinations. The ability to accurately recognize the various imaging manifestations after orbital surgery is critical for radiologists to avoid misdiagnosis. Of particular importance is familiarity with the numerous types of implanted devices, such as glaucoma drainage devices, orbital implants, and eyelid weights. Although knowledge of patients’ surgical history is helpful, this information is often not available at the time of interpretation. Fortunately, there are characteristic posttreatment findings that enable diagnosis. The imaging features of the most commonly performed ophthalmologic procedures are highlighted, with emphasis on computed tomography and magnetic resonance (MR) imaging, because they are currently the primary modalities involved in evaluating the orbits. Glaucoma drainage devices and orbital implants after enucleation are two of the more pertinent implanted devices because their composition has substantially evolved over the past 2 decades, which affects their imaging appearance. Some devices, such as the Baerveldt Glaucoma Implant and platinum-weighted eyelid implants, may distort radiologic images. The MR imaging safety profiles of numerous implanted devices are also reported.

1 © 2015 The Radiological Society of North America. All rights reserved. Originally puplished in English in RadioGraphics 2015; 35: 221 – 234. Online published in 10.1148 /rg.351140008. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Congdon N, O’Colmain B, Klaver CC et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004; 122: 477-485
  • 2 Geffen N, Trope GE, Alasbali T et al. Is the Ex-PRESS glaucoma shunt magnetic resonance imaging safe?. J Glaucoma 2010; 19: 116-118
  • 3 Hong CH, Arosemena A, Zurakowski D et al. Glaucoma drainage devices: a systematic literature review and current controversies. Surv Ophthalmol 2005; 50: 48-60
  • 4 Ball SF, Ellis Jr GS, Herrington RG et al. Brown’s superior oblique tendon syndrome after Baerveldt glaucoma implant. Arch Ophthalmol 1992; 110: 1368
  • 5 Reiter M, Schwope R, Walker K et al. Imaging of glaucoma drainage devices. J Comput Assist Tomogr 2012; 36: 277-279
  • 6 Jeon TY, Kim HJ, Kim ST et al. MR imaging features of giant reservoir formation in the orbit: an unusual complication of Ahmed glaucoma valve implantation. AJNR Am J Neuroradiol 2007; 28: 1565-1566
  • 7 Schwartz KS, Lee RK, Gedde SJ. Glaucoma drainage implants: a critical comparison of types. Curr Opin Ophthalmol 2006; 17: 181-189
  • 8 Ceballos EM, Parrish 2nd RK. Plain film imaging of Baerveldt glaucoma drainage implants. AJNR Am J Neuroradiol 2002; 23: 935-937
  • 9 Sharkness CM, Hamburger S, Kaczmarek RG et al. Racial differences in the prevalence of intraocular lens implants in the United States. Am J Ophthalmol 1992; 114: 667-674
  • 10 Kuo MD, Hayman LA, Lee AG et al. In vivo CT and MR appearance of prosthetic intraocular lens. AJNR Am J Neuroradiol 1998; 19: 749-753
  • 11 Aksoy FG, Gomori JM, Halpert M. CT and MR imaging of contact lenses and intraocular lens implants. Comput Med Imaging Graph 1999; 23: 205-208
  • 12 Mafee MF, Karimi A, Shah J et al. Anatomy and pathology of the eye: role of MR imaging and CT. Neuroimaging Clin N Am 2005; 15: 23-47
  • 13 Lane JI, Watson Jr RE, Witte RJ et al. Retinal detachment: imaging of surgical treatments and complications. RadioGraphics 2003; 23: 983-994
  • 14 Bakshandeh H, Shellock FG, Schatz CJ et al. Metallic clips used for scleral buckling: ex vivo evaluation of ferromagnetism at 1,5 T. J Magn Reson Imaging 1993; 3: 559
  • 15 Mathews VP, Elster AD, Barker PB et al. Intraocular silicone oil: in vitro and in vivo MR and CT characteristics. AJNR Am J Neuroradiol 1994; 15: 343-347
  • 16 LeBedis CA, Sakai O. Nontraumatic orbital conditions: diagnosis with CT and MR imaging in the emergent setting. RadioGraphics 2008; 28 : 1741-1753
  • 17 Herrick RC, Hayman LA, Maturi RK et al. Optimal imaging protocol after intraocular silicone oil tamponade. AJNR Am J Neuroradiol 1998; 19 : 101-108
  • 18 Herrick RC, Hayman LA, Taber KH et al. Artifacts and pitfalls in MR imaging of the orbit: a clinical review. RadioGraphics 1997; 17 : 707-724
  • 19 Shields CL, Shields JA, De Potter P. Hydroxyapatite orbital implant after enucleation: experience with initial 100 consecutive cases. Arch Ophthalmol 1992; 110 : 333-338
  • 20 Hunter TB, Yoshino MT, Dzioba RB et al. Medical devices of the head, neck, and spine. RadioGraphics 2004; 24: 257-285
  • 21 Shields CL, Shields JA, De Potter P et al. Problems with the hydroxyapatite orbital implant: experience with 250 consecutive cases. Br J Ophthalmol 1994; 78: 702-706
  • 22 De Potter P, Duprez T, Cosnard G. Postcontrast magnetic resonance imaging assessment of porous polyethylene orbital implant (Medpor). Ophthalmology 2000; 107: 1656-1660
  • 23 Su GW, Yen MT. Current trends in managing the anophthalmic socket after primary enucleation and evisceration. Ophthal Plast Reconstr Surg 2004; 20: 274-280
  • 24 Gale ME, Vincent ME, Sutula FC. Orbital implants and prostheses: postoperative computed tomographic appearance. AJNR Am J Neuroradiol 1985; 6: 403-407
  • 25 Coskun U, Ozturk S, Zor F et al. Imaging of porous polyethylene implant by using multidetector spiral computed tomography. J Craniofac Surg 2008; 19: 156-158
  • 26 Lukáts O, Bujtár P, Sándor GK et al. Porous hydroxyapatite and aluminum-oxide ceramic orbital implant evaluation using CBCT scanning: a method for in vivo porous structure evaluation and monitoring. Int J Biomater 2012; 2012: 764-749
  • 27 Sires BS, Holds JB, Archer CR. Postimplantation density changes in coralline hydroxyapatite orbital implants. Ophthal Plast Reconstr Surg 1998; 14: 318-322
  • 28 Sires BS, Holds JB, Archer CR. Variability of mineral density in coralline hydroxyapatite spheres: study by quantitative computed tomography. Ophthal Plast Reconstr Surg 1993; 9: 250-253
  • 29 Graue GF, Finger PT. Physiologic positron emission tomography/CT imaging of an integrated orbital implant. Ophthal Plast Reconstr Surg 2012; 28: e4-e6
  • 30 Domange-Testard A, Papathanassiou D, Menéroux B et al. SPECT-CT images of an ocular coralline hydroxyapatite implant visible on bone scintigraphy. Clin Nucl Med 2007; 32: 132-134
  • 31 Flanders AE, De Potter P, Rao VM et al. MRI of orbital hydroxyapatite implants. Neuroradiology 1996; 38: 273-277
  • 32 Barnwell JD, Castillo M. MR imaging of progressive enhancement of a bioceramic orbital prosthesis: an indicator of fibrovascular invasion. AJNR Am J Neuroradiol 2011; 32: E8-E9
  • 33 Yuh WT, Hanigan MT, Nerad JA et al. Extrusion of eye socket magnetic implant after MR imaging: potential hazard to patient with eye prosthesis. J Magn Reson Imaging 1991; 1: 711-713
  • 34 Zwick OM, Seiff SR. Supportive care of facial nerve palsy with temporary external eyelid weights. Optometry 2006; 77: 340-342
  • 35 Seiff SR, Boerner M, Carter SR. Treatment of facial palsies with external eyelid weights. Am J Ophthalmol 1995; 120: 652-657
  • 36 Robey AB, Snyder MC. Reconstruction of the paralyzed face. Ear Nose Throat J 2011; 90: 267-275
  • 37 Schrom T, Thelen A, Asbach P et al. Effect of 7,0 Tesla MRI on upper eyelid implants. Ophthal Plast Reconstr Surg 2006; 22: 480-482
  • 38 Marra S, Leonetti JP, Konior RJ et al. Effect of magnetic resonance imaging on implantable eyelid weights. Ann Otol Rhinol Laryngol 1995; 104: 448-452
  • 39 Swanger RS, Crum AV, Klett ZG et al. Postsurgical imaging of the globe. Semin Ultrasound CT MR 2011; 32: 57-63
  • 40 Ervin AM, Wojciechowski R, Schein O. Punctal occlusion for dry eye syndrome. Cochrane Database Syst Rev 2010; 9 CD006775
  • 41 Mittelman D. Amblyopia. Pediatr Clin North Am 2003; 50: 189-196
  • 42 Kadom N. Pediatric strabismus imaging. Curr Opin Ophthalmol 2008; 19: 371-378
  • 43 Scott AB, Alexander DE, Miller JM. Bupivacaine injection of eye muscles to treat strabismus. Br J Ophthalmol 2007; 91: 146-148
  • 44 Scott AB, Miller JM, Shieh KR. Treating strabismus by injecting the agonist muscle with bupivacaine and the antagonist with botulinum toxin. Trans Am Ophthalmol Soc 2009; 107: 104-109
  • 45 Hart BL, Spar JA, Orrison Jr WW. Calcification of the trochlear apparatus of the orbit: CT appearance and association with diabetes and age. AJR Am J Roentgenol 1992; 159: 1291-1294