Subscribe to RSS
DOI: 10.1055/s-0034-1397349
MicroRNAs in the Biology and Diagnosis of Cholangiocarcinoma
Publication History
Publication Date:
29 January 2015 (online)
Abstract
Ever since their discovery, microRNAs (miRNAs) have been the subject of intense investigation of their roles in cells and tissues, both normal and disease state. Although some of the precise mechanisms of biogenesis and actions of miRNAs remain debatable, the fact that miRNAs are dysregulated in diseases such as cancer is undisputed. For many miRNA species, computational databases predict often numerous targets; however, experimental verification in vitro and in vivo is still lacking. For some miRNAs, species-specific targets have been validated; nevertheless, the precise mechanisms those targets act in and whether they are the only truly important ones remain to be discovered. The authors take a closer look at the current status of the role of miRNAs in the diagnosis and biology of cholangiocarcinomas where the perhaps biggest impact in the short term comes from the use of biomarkers in the early diagnosis.
-
References
- 1 Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003; 113 (6) 673-676
- 2 Mlynarczyk SK, Panning B. X inactivation: Tsix and Xist as yin and yang. Curr Biol 2000; 10 (24) R899-R903
- 3 Lai EC. microRNAs: runts of the genome assert themselves. Curr Biol 2003; 13 (23) R925-R936
- 4 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75 (5) 843-854
- 5 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans . Cell 1993; 75 (5) 855-862
- 6 Carrington JC, Ambros V. Role of microRNAs in plant and animal development. Science 2003; 301 (5631) 336-338
- 7 Lee Y, Kim M, Han J , et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23 (20) 4051-4060
- 8 Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004; 10 (12) 1957-1966
- 9 Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14 (10A): 1902-1910
- 10 Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature 2004; 432 (7014) 231-235
- 11 Lee Y, Ahn C, Han J , et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 (6956) 415-419
- 12 Gregory RI, Yan KP, Amuthan G , et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432 (7014) 235-240
- 13 Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303 (5654) 95-98
- 14 Okada C, Yamashita E, Lee SJ , et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science 2009; 326 (5957) 1275-1279
- 15 Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409 (6818) 363-366
- 16 Grishok A, Pasquinelli AE, Conte D , et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 2001; 106 (1) 23-34
- 17 Hutvágner G, McLachlan J, Pasquinelli AE, Bálint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293 (5531) 834-838
- 18 Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15 (20) 2654-2659
- 19 Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 2011; 12 (1) 19-31
- 20 Chendrimada TP, Gregory RI, Kumaraswamy E , et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436 (7051) 740-744
- 21 Haase AD, Jaskiewicz L, Zhang H , et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 2005; 6 (10) 961-967
- 22 Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J 2006; 25 (3) 522-532
- 23 Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27 (1) 91-105
- 24 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136 (2) 215-233
- 25 Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19 (1) 92-105
- 26 Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol Cell 2010; 38 (6) 781-788
- 27 Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455 (7209) 64-71
- 28 Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455 (7209) 58-63
- 29 Hendrickson DG, Hogan DJ, McCullough HL , et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 2009; 7 (11) e1000238
- 30 Mullokandov G, Baccarini A, Ruzo A , et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods 2012; 9 (8) 840-846
- 31 Kedde M, Strasser MJ, Boldajipour B , et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 2007; 131 (7) 1273-1286
- 32 Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 2006; 125 (6) 1111-1124
- 33 Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009; 23 (15) 1743-1748
- 34 Pasquinelli AE, Ruvkun G. Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 2002; 18: 495-513
- 35 Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol 2013; 774: 1-20
- 36 Hummel R, Hussey DJ, Haier J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010; 46 (2) 298-311
- 37 Calin GA, Liu CG, Sevignani C , et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A 2004; 101 (32) 11755-11760
- 38 Schetter AJ, Leung SY, Sohn JJ , et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 2008; 299 (4) 425-436
- 39 Lu J, Getz G, Miska EA , et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435 (7043) 834-838
- 40 Hatley ME, Patrick DM, Garcia MR , et al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell 2010; 18 (3) 282-293
- 41 Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467 (7311) 86-90
- 42 Costinean S, Zanesi N, Pekarsky Y , et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A 2006; 103 (18) 7024-7029
- 43 O'Connell RM, Rao DS, Chaudhuri AA , et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008; 205 (3) 585-594
- 44 Tagawa H, Seto M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 2005; 19 (11) 2013-2016
- 45 He L, Thomson JM, Hemann MT , et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435 (7043) 828-833
- 46 Kumar MS, Erkeland SJ, Pester RE , et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 2008; 105 (10) 3903-3908
- 47 Meng F, Henson R, Lang M , et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 2006; 130 (7) 2113-2129
- 48 Okamoto K, Miyoshi K, Murawaki Y. miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS ONE 2013; 8 (10) e77623
- 49 Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T. The microRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 2007; 282 (11) 8256-8264
- 50 Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T. Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene 2008; 27 (3) 378-386
- 51 Zhang J, Han C, Zhu H, Song K, Wu T. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF). Am J Pathol 2013; 182 (5) 1629-1639
- 52 Lu L, Byrnes K, Han C, Wang Y, Wu T. miR-21 targets 15-PGDH and promotes cholangiocarcinoma growth. Mol Cancer Res 2014; 12 (6) 890-900
- 53 Chusorn P, Namwat N, Loilome W , et al. Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis. Tumour Biol 2013; 34 (3) 1579-1588
- 54 He Q, Cai L, Shuai L , et al. Ars2 is overexpressed in human cholangiocarcinomas and its depletion increases PTEN and PDCD4 by decreasing microRNA-21. Mol Carcinog 2013; 52 (4) 286-296
- 55 Gruber JJ, Zatechka DS, Sabin LR , et al. Ars2 links the nuclear cap-binding complex to RNA interference and cell proliferation. Cell 2009; 138 (2) 328-339
- 56 Iwaki J, Kikuchi K, Mizuguchi Y , et al. MiR-376c down-regulation accelerates EGF-dependent migration by targeting GRB2 in the HuCCT1 human intrahepatic cholangiocarcinoma cell line. PLoS ONE 2013; 8 (7) e69496
- 57 Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 2009; 286 (2) 217-222
- 58 Wang Q, Tang H, Yin S, Dong C. Downregulation of microRNA-138 enhances the proliferation, migration and invasion of cholangiocarcinoma cells through the upregulation of RhoC/p-ERK/MMP-2/MMP-9. Oncol Rep 2013; 29 (5) 2046-2052
- 59 Liu CZ, Liu W, Zheng Y , et al. PTEN and PDCD4 are bona fide targets of microRNA-21 in human cholangiocarcinoma. Chin Med Sci J 2012; 27 (2) 65-72
- 60 Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007; 26 (42) 6133-6140
- 61 Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110 (5) 1155-1164
- 62 Chen L, Yan HX, Yang W , et al. The role of microRNA expression pattern in human intrahepatic cholangiocarcinoma. J Hepatol 2009; 50 (2) 358-369
- 63 Selaru FM, Olaru AV, Kan T , et al. MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009; 49 (5) 1595-1601
- 64 Peng F, Jiang J, Yu Y , et al. Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis. Br J Cancer 2013; 109 (12) 3092-3104
- 65 Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 2004; 23 (20) 4061-4071
- 66 Olaru AV, Ghiaur G, Yamanaka S , et al. MicroRNA down-regulated in human cholangiocarcinoma control cell cycle through multiple targets involved in the G1/S checkpoint. Hepatology 2011; 54 (6) 2089-2098
- 67 Zhong XY, Yu JH, Zhang WG , et al. MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. Gene 2012; 493 (1) 44-51
- 68 Hu C, Huang F, Deng G, Nie W, Huang W, Zeng X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1. Exp Ther Med 2013; 6 (5) 1265-1270
- 69 Kunkeaw N, Jeon SH, Lee K , et al. Cell death/proliferation roles for nc886, a non-coding RNA, in the protein kinase R pathway in cholangiocarcinoma. Oncogene 2013; 32 (32) 3722-3731
- 70 An F, Yamanaka S, Allen S , et al. Silencing of miR-370 in human cholangiocarcinoma by allelic loss and interleukin-6 induced maternal to paternal epigenotype switch. PLoS ONE 2012; 7 (10) e45606
- 71 Chen Y, Luo J, Tian R, Sun H, Zou S. miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Dig Dis Sci 2011; 56 (6) 1693-1701
- 72 Chen Y, Gao W, Luo J, Tian R, Sun H, Zou S. Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma. Oncol Rep 2011; 25 (2) 443-451
- 73 Chen YJ, Luo J, Yang GY, Yang K, Wen SQ, Zou SQ. Mutual regulation between microRNA-373 and methyl-CpG-binding domain protein 2 in hilar cholangiocarcinoma. World J Gastroenterol 2012; 18 (29) 3849-3861
- 74 Zeng B, Li Z, Chen R , et al. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett 2012; 586 (19) 3271-3278
- 75 Foreman KW, Brown M, Park F , et al. Structural and functional profiling of the human histone methyltransferase SMYD3. PLoS ONE 2011; 6 (7) e22290
- 76 Li B, Han Q, Zhu Y, Yu Y, Wang J, Jiang X. Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J 2012; 279 (13) 2393-2398
- 77 Oishi N, Kumar MR, Roessler S , et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology 2012; 56 (5) 1792-1803
- 78 Qiu YH, Wei YP, Shen NJ , et al. miR-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem 2013; 32 (5) 1331-1341
- 79 Razumilava N, Bronk SF, Smoot RL , et al. miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 2012; 55 (2) 465-475
- 80 Zhang J, Han C, Wu T. MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. Gastroenterology 2012; 143 (1) 246-56.e8
- 81 Janpipatkul K, Suksen K, Borwornpinyo S , et al. Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration. Cell Signal 2014; 26 (8) 1668-1679
- 82 Kawahigashi Y, Mishima T, Mizuguchi Y , et al. MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs. J Nippon Med Sch 2009; 76 (4) 188-197
- 83 Chen X, Chen J, Liu X, Guo Z, Sun X, Zhang J. The real-time dynamic monitoring of microRNA function in cholangiocarcinoma. PLoS ONE 2014; 9 (6) e99431
- 84 Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2013; 52 (4) 297-303
- 85 McNally ME, Collins A, Wojcik SE , et al. Concomitant dysregulation of microRNAs miR-151-3p and miR-126 correlates with improved survival in resected cholangiocarcinoma. HPB (Oxford) 2013; 15 (4) 260-264
- 86 Collins AL, Wojcik S, Liu J , et al. A differential microRNA profile distinguishes cholangiocarcinoma from pancreatic adenocarcinoma. Ann Surg Oncol 2014; 21 (1) 133-138
- 87 Li L, Masica D, Ishida M , et al. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis. Hepatology 2014; 60 (3) 896-907
- 88 Jiao Y, Pawlik TM, Anders RA , et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45 (12) 1470-1473